Multi-modal Periodic Trajectories in Fermi-Pasta-Ulam Chains

  • Susanna Terracini
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 75)


This paper deals with the problem of bifurcation of periodic trajectories in the Fermi-Pasta-Ulam chains of nonlinear oscillator.


Periodic Solution Diophantine Equation Primary Branch Morse Index Toda Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Arioli, F. Gazzola and S. Terracini, Periodic motions of an infinte lattice of particles with nearest neighbour interaction, Nonlin. Anal. TMA (1996)Google Scholar
  2. [2]
    G. Arioli, H. Koch and S. Terracini, Two novel methods and Multi mode periodic solutions for the fermi-Pasta-Ulam model, Comm. Math. Phys. (2005)Google Scholar
  3. [3]
    A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis. Cambridge studies in Adv. Math. 34. Cambrige Univ. Press, Cambridge, 1993.Google Scholar
  4. [4]
    L. Berchialla, L. Galgani and A. Giorgilli, Localization of energy in FPU chains, Discrete Cont. Dynam. Systems A, (2004)Google Scholar
  5. [5]
    B. Buffoni, J. Toland, Analytic theory of global bifurcation. An introduction. Princeton Series in Appl. Math. Princeton Univ. Press, Princeton, 2003.MATHGoogle Scholar
  6. [6]
    J.H. Conway, A. J. Jones, Trigonometric Diophantine equations (on the vanishing sums of roots of unity), Acta Arith. 30 (1976), 3, 229–240.MATHMathSciNetGoogle Scholar
  7. [7]
    E. Fermi, J. Pasta and S. Ulam, Studies of Nonlinear Problems, Los Alamos Rpt. LA-1940 (1955); also in Collected Works of E. Fermi University of Chicago Press, 1965, Vol II, p. 978.Google Scholar
  8. [8]
    G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, fifth ed., The Clarendon Press Oxford University Press, New York, 1979.MATHGoogle Scholar
  9. [9]
    P. C. Hemmer, Dynamic and stochastic types of motion in the linear chain, Ph.D. thesis, Trondheim, 1959.Google Scholar
  10. [10]
    H. Kielhöfer, A bifurcation theorem for potential operators, J. Funct. Anal. 77 (1988), no. 1, 1–8.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    T. Y. Lam and K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000), no. 1, 91–109.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Henry B. Mann, On linear relations between roots of unity, Mathematika 12 (1965), 107–117.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    G. Molteni, E. Serra, M. Tarallo and S. Terracini, Asymptotic resonance, interaction of modes and subharmonic bifurcation, Arch. Rat. Mech. Anal (2006)Google Scholar
  14. [14]
    W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second ed., Springer-Verlag, Berlin, 1990.MATHGoogle Scholar
  15. [15]
    B. Rink, Symmetri and resonance in periodic FPU chains, Comm. Math. Phys. (2001)Google Scholar
  16. [16]
    B. Rink, Symmetric invariant manifolds in the Fermi-Pasta-Ulam lattice, Physica D 175 (2003) 31–42.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Toda, Theory of nonlinear lattices. Second edition. Springer Series in Solid-State Sciences, 20. Springer-Verlag, Berlin, 1989.MATHGoogle Scholar
  18. 18]
    L. C. Washington, Introduction to cyclotomic fields, second ed., Springer-Verlag, New York, 1997.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Susanna Terracini
    • 1
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Milano “Bicocca”MilanoItaly

Personalised recommendations