Skip to main content

Abstract

There is a one-to-one correspondence between C 1+H Cantor exchange systems that are C 1+H fixed points of renormalization and C 1+H diffeomorphisms f on surfaces with a codimension 1 hyperbolic attractor Λ that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Λ. However, there is no such C 1+α Cantor exchange system with bounded geometry that is a C 1+α fixed point of renormalization with regularity α greater than the Hausdorff dimension of its invariant Cantor set. The proof of the last result uses that the stable holonomies of a codimension 1 hyperbolic attractor Λ are not C 1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces. Asterisque 250, 1998.

    Google Scholar 

  2. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics 470, Springer-Verlag, New York, 1975.

    Google Scholar 

  3. A. Denjoy, Sur les courbes définies par les équations différentielles á la surface du tore. J. Math. Pure et Appl. 11, série 9 (1932), 333–375.

    MATH  Google Scholar 

  4. A. Fahti, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces. Astérisque 66–67 (1991), 1–286.

    Google Scholar 

  5. E. de Faria, W. de Melo, and A.A. Pinto, Global hyperbolicity of renormalization for Cr unimodal mappings. Annals of Mathematics. To appear. 1–96.

    Google Scholar 

  6. F. Ferreira and A. A. Pinto, Explosion of smoothness from a point to everywhere for conjugacies between diffeomorphisms on surfaces. Ergod. Th. & Dynam. Sys. 23 (2003), 509–517.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Ferreira and A. A. Pinto, Explosion of smoothness from a point to everywhere for conjugacies between Markov families. Dyn. Sys. 16, no. 2 (2001), 193–212.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Franks, Anosov Diffeomorphisms. Global Analysis (ed. S Smale) AMS Providence (1970), 61–93.

    Google Scholar 

  9. J. Franks, Anosov diffeomorphisms on tori. Trans. Amer. Math. Soc. 145 (1969), 117–124.

    Article  MathSciNet  Google Scholar 

  10. A. A. Gaspar Ruas, Atratores hiperbólicos de codimensão um e classes de isotopia em superficies. Tese de Doutoramento. IMPA, Rio de Janeiro, 1982.

    Google Scholar 

  11. J. Harrison, An introduction to fractals. Proceedings of Symposia in Applied Mathematics 39 American Mathematical Society (1989), 107–126.

    MathSciNet  Google Scholar 

  12. M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets. Proc. Symp. Pure Math., Amer. Math. Soc. 14 (1970), 133–164.

    MathSciNet  Google Scholar 

  13. H. Kollmer, On the structure of axiom-A attractors of codimension one. XI Colóquio Brasileiro de Matemática, vol. II (1997), 609–619.

    Google Scholar 

  14. R. Mañé, Ergodic Theory and Differentiable Dynamics. Springer-Verlag Berlin, 1987.

    MATH  Google Scholar 

  15. A. Manning, There are no new Anosov diffeomorphisms on tori. Amer. J. Math. 96 (1974), 422.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Newhouse, On codimension one Anosov diffeomorphisms. Amer. J. Math. 92 (1970), 671–762.

    Article  MathSciNet  Google Scholar 

  17. S. Newhouse and J. Palis, Hyperbolic nonwandering sets on two-dimension manifolds. Dynamical systems (ed. M Peixoto), 1973.

    Google Scholar 

  18. A. Norton, Denjoy’s Theorem with exponents. Proceedings of the American Mathematical Society 127, no. 10 (1999), 3111–3118.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. A. Pinto and D. A. Rand, Solenoid Functions for Hyperbolic sets on Surfaces. A survey paper to be published by MSRI book series (published by Cambridge University Press) (2006), 1–29.

    Google Scholar 

  20. A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets surfaces. Journal London Math. Soc. 71,2 (2004), 481–502.

    Article  MathSciNet  Google Scholar 

  21. A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics. Bull. London Math. Soc. 34 (2002), 341–352.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics. Ergod. Th. Dynam. Sys. 22 (2002), 1905–1931.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. A. Pinto and D. A. Rand, Classifying C 1+ structures on hyperbolical fractals: 1 The moduli space of solenoid functions for Markov maps on train-tracks. Ergod. Th. Dynam. Sys. 15 (1995), 697–734.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. A. Pinto and D. A. Rand, Classifying C 1+ structures on hyperbolical fractals: 2 Embedded trees. Ergod. Th. Dynam. Sys. 15 (1995), 969–992.

    MATH  MathSciNet  Google Scholar 

  25. A. A. Pinto, D. A. Rand, and F. Ferreira, Hausdorff dimension bounds for smoothness of holonomies for codimension 1 hyperbolic dynamics, J. Differential Equations. Special issue dedicated to A. Cellina and J. A. Yorke. Accepted for publication (2007).

    Google Scholar 

  26. A. A. Pinto, D. A. Rand, and F. Ferreira, Cantor exchange systems and renormalization. Submitted (2006).

    Google Scholar 

  27. A. A. Pinto and D. Sullivan, The circle and the solenoid. Dedicated to Anatole Katok On the Occasion of his 60th Birthday. DCDS-A 16, no. 2 (2006), 463–504.

    MATH  MathSciNet  Google Scholar 

  28. T. Sauer, J. A. Yorke, and M. Casdagli, Embedology, Journal of Statistical Physics 65, no. 3–4 (1991), 579–616.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Schub, Global Stability of Dynamical Systems. Springer-Verlag, 1987.

    Google Scholar 

  30. Ya Sinai, Markov partitions and C-diffeomorphisms. Anal. and Appl. 2 (1968), 70–80.

    MathSciNet  Google Scholar 

  31. D. Sullivan, Differentiable structures on fractal-like sets determined by intrinsic scaling functions on dual Cantor sets. Proceedings of Symposia in Pure Mathematics 48 American Mathematical Society, 1988.

    Google Scholar 

  32. W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. 19 (1988), 417–431.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. F. Williams, Expanding attractors. Publ. I.H.E.S. 43 (1974), 169–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Arrigo Cellina and James Yorke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Ferreira, F., Pinto, A.A., Rand, D.A. (2007). Hausdorff Dimension versus Smoothness. In: Staicu, V. (eds) Differential Equations, Chaos and Variational Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 75. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8482-1_15

Download citation

Publish with us

Policies and ethics