Skip to main content

Abstract

We survey the few exact results on the Störmer problem describing the dynamics of charged particles in the Earth magnetosphere. The analysis of this system leads to the the conclusion that charged particles are trapped in the Earth magnetosphere or escape to infinity, and the trapping region is bounded by a torus-like surface, the Van Allen inner radiation belt. In the trapping region, the motion of the charged particles can be periodic, quasi-period or chaotic. The three main effects observed in the Earth magnetosphere, radiation belts, radiation aurorae and South Atlantic anomaly, are described in the framework described here. We discuss some new mathematical problems suggested by the analysis of the Störmer problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Braun, Particle motions in a magnetic field, J. Diff. Equ., 8 (1970) 294–332.

    Article  MathSciNet  Google Scholar 

  2. M. Braun, On the stability of the Van Allen radiation belt, SIAM J. Appl. Math., 37 (1979) 664–668.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Braun, Mathematical remarks on the Van Allen radiation belt: a survey of old and new results, SIAM Review, 23 (1981) 61–93.

    Article  MATH  MathSciNet  Google Scholar 

  4. D.R. J. Chillingworth, Differential Topology with a View to Applications, Pitman Publishing, London, 1976.

    MATH  Google Scholar 

  5. E. J. Daly, The Evaluation of Space Radiation Environments for ESA Projects, ESA Jopurnal, 12 (1988) 229–247.

    Google Scholar 

  6. R. DeVogelaere, On the structure of symmetric periodic solutions of conservative systems, with applications. In: S. Lefschetz (Ed.) Contributions to the Theory of Nonlinear Oscillations, pp. 53–84. Princeton University Press, Princeton, 1958.

    Google Scholar 

  7. A. J. Dragt, Trapped Orbits in a Magnetic Dipole Field, Rev. Geophysics, 3 (1965) 255–298.

    Article  Google Scholar 

  8. A. J. Dragt and J.M. Finn, Insolubility of trapped particle motion in a magnetic dipole field, J. Geophys. Res., 81 (1976) 2327–2340.

    Article  Google Scholar 

  9. R.P. Feynman, R.B. Leighton, and M. Sands, Lectures on Physics, vol. II, Addison-Wesley, Reading, 1964.

    MATH  Google Scholar 

  10. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  11. W. N. Hess, The Radiation Belt and Magnetosphere. Blaisdel, Waltham, MA, 1968.

    Google Scholar 

  12. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion. Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  13. V. V. Nemitskii and V.V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 1960.

    Google Scholar 

  14. T. Rikitake and Y. Honkura, Solid Earth Geomagnetism, Terra Scientific Publishing Co., Tokyo, 1985.

    Google Scholar 

  15. E. G. Stassinopoulos and J.P. Raymond, The Space Radiation Environment for Electronics, Proceedings IEEE, 76 no11 (1988) 1423–1442.

    Article  Google Scholar 

  16. C. Störmer, The Polar Aurora, Oxford at the Clarendon Press, Oxford, 1955.

    MATH  Google Scholar 

  17. P. F. Tupper, Ergodicity and the Numerical Simulation of Hamiltonian Systems, SIAM J. Applied Dynamical Systems, 4 no3 (2005) 563–587.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Underwood, D. Brock, P. Williams, S. Kim, R. Dilão, P. Ribeiro Santos, M. Brito, C. Dyer, and A. Sims, Radiation Environment Measurements with the Cosmic Ray Experiments On-Board the KITSAT-1 and PoSAT-1 Micro-Satellites, IEEE Transactions on Nuclear Sciences, 41 (1994) 2353–2360.

    Article  Google Scholar 

  19. J. A. Van Allen and L A. Frank, Radiation Around the Earth to a Radial Distance of 107, 400 KM, Nature, 183 (1959) 430–434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Arrigo Cellina and James Yorke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Dilão, R., Alves-Pires, R. (2007). Chaos in the Störmer Problem. In: Staicu, V. (eds) Differential Equations, Chaos and Variational Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 75. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8482-1_14

Download citation

Publish with us

Policies and ethics