Skip to main content

Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations

  • Conference paper
Seminar on Stochastic Analysis, Random Fields and Applications V

Part of the book series: Progress in Probability ((PRPR,volume 59))

Abstract

We are interested in modelling Darwinian evolution, resulting from the interplay of phenotypic variation and natural selection through ecological interactions. Our models are rooted in the microscopic, stochastic description of a population of discrete individuals characterized by one or several adaptive traits. The population is modelled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by each individual’s trait values, and interactions between individuals. An offspring usually inherits the trait values of her progenitor, except when a mutation causes the offspring to take an instantaneous mutation step at birth to new trait values. We look for tractable large population approximations. By combining various scalings on population size, birth and death rates, mutation rate, mutation step, or time, a single microscopic model is shown to lead to contrasting macroscopic limits, of different nature: deterministic, in the form of ordinary, integro-, or partial differential equations, or probabilistic, like stochastic partial differential equations or superprocesses. In the limit of rare mutations, we show that a possible approximation is a jump process, justifying rigorously the so-called trait substitution sequence. We thus unify different points of view concerning mutation-selection evolutionary models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous, Stopping times and tightness, Ann. Probab., 6 (1978), 335–340.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Bolker and S. W. Pacala, Using moment equations to understand stochastically driven spatial pattern formation in ecological systems, Theor. Pop. Biol., 52 (1997), 179–197.

    Article  MATH  Google Scholar 

  3. B. M. Bolker and S. W. Pacala, Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal, Am. Nat., 153 (1999), 575–602.

    Article  Google Scholar 

  4. R. Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, John Wiley & Sons, Chichester, 2000.

    MATH  Google Scholar 

  5. W. A. Calder III, Size, Function and Life History, Harvard University Press, Cambridge, 1984.

    Google Scholar 

  6. N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Process. Appl., 116 (2006), 1127–1160.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theoretical Population Biology, 69 (2006), 297–321.

    Article  MATH  Google Scholar 

  8. E. L. Charnov, Life History Invariants, Oxford University Press, Oxford, 1993.

    Google Scholar 

  9. L. Desvillettes, C. Prevost, and R. Ferriere, Infinite dimensional reaction-diffusion for evolutionary population dynamics, Preprint CMLA, École Normale Superieure de Cachan, 2004.

    Google Scholar 

  10. U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579–612.

    MATH  MathSciNet  Google Scholar 

  11. U. Dieckmann and R. Law, Relaxation projections and the method of moments, in: U. Dieckmann, R. Law, and J. A. J. Metz, Editors, The Geometry of Ecological Interactions: Symplifying Spatial Complexity, Cambridge University Press, Cambridge, (2000), 412–455.

    Google Scholar 

  12. A. Etheridge, Survival and extinction in a locally regulated population, Ann. Appl. Probab., 14 (2004), 188–214.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, John Wiley & Sons, New York, 1986.

    MATH  Google Scholar 

  14. S. N. Evans and E. A. Perkins, Measure-valued branching diffusions with singular interactions, Canad. J. Math., 46 (1994), 120–168.

    MATH  MathSciNet  Google Scholar 

  15. N. Fournier and S. Méléard, A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Probab., 14 (2004), 1880–1919.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. I. Freidlin and A. D. Wentzel, Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  17. A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. Appl. Probab., 18 (1986), 20–65.

    Article  MATH  Google Scholar 

  18. E. Kisdi, Evolutionary branching under asymmetric competition, J. Theor. Biol., 197 (1999), 149–162.

    Article  Google Scholar 

  19. R. Law, D. J. Murrell, and U. Dieckmann, Population growth in space and time: spatial logistic equations, Ecology, 84 (2003), 252–262.

    Article  Google Scholar 

  20. S. Méléard and S. Roelly, Sur les convergences étroite ou vague de processus à valeurs mesures, C.R. Acad. Sci. Paris Sér. I Math., 317 (1993), 785–788.

    MATH  Google Scholar 

  21. J. A. J. Metz, R. M. Nisbet, and S. A. H. Geritz, How should we define fitness for general ecological scenarios, Trends Ecol. Evol., 7 (1992), 198–202.

    Article  Google Scholar 

  22. J. A. J. Metz, S. A. H. Geritz, G. Meszeena, F. A. J. Jacobs, and J. S. van Heerwaarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction, in S. J. van Strien and S. M. Verduyn Lunel, Editors, Stochastic and Spatial Structures of Dynamical Systems, North Holland, Amsterdam, (1996), 183–231.

    Google Scholar 

  23. S. Roelly-Coppoletta, A criterion of convergence of measure-valued processes: application to measure branching processes, Stoch. Stoch. Rep., 17 (1986), 43–65.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Champagnat, N., Ferrière, R., Méléard, S. (2007). Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations. In: Dalang, R.C., Russo, F., Dozzi, M. (eds) Seminar on Stochastic Analysis, Random Fields and Applications V. Progress in Probability, vol 59. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8458-6_6

Download citation

Publish with us

Policies and ethics