Skip to main content

Dirichlet Forms Methods: An Application to the Propagation of the Error Due to the Euler Scheme

  • Conference paper
  • 1029 Accesses

Part of the book series: Progress in Probability ((PRPR,volume 59))

Abstract

We present recent advances on Dirichlet forms methods either to extend financial models beyond the usual stochastic calculus or to study stochastic models with less classical tools. In this spirit, we interpret the asymptotic error on the solution of an sde due to the Euler scheme (Kurtz and Protter [39]) in terms of a Dirichlet form on the Wiener space, what allows to propagate this error thanks to functional calculus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2, Stochastic Process. Appl., 86 (2000).

    Google Scholar 

  2. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function, Prob. Th. and Rel. Fields, 2(2) (1996), 93–128.

    MATH  MathSciNet  Google Scholar 

  3. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: II. Convergence rate of the density, Monte Carlo Methods and Appl., 104(1) (1996), 43–80.

    MATH  MathSciNet  Google Scholar 

  4. E. Barucci, P. Malliavin, M. E. Mancino, R. Renó, and A. Thalmaier, The price volatility feedback rate: an implementable indicator of market stability, Math. Finance, 13 (2003), 17–35.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bouchard, I. Ekeland, and N. Touzi, On the Malliavin approach to Monte Carlo approximation of conditional expectations, Finance Stoch., 8 (2004), 45–71.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Bouleau, About stochastic integrals with respect to processes which are not semimartingales, Osaka J. Math., 22 (1985), 31–34.

    MATH  MathSciNet  Google Scholar 

  7. N. Bouleau, Error calculus and path sensitivity in financial models, Mathematical Finance, 13(1) (2003), 115–134.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Bouleau, Error Calculus for Finance and Physics, the Language of Dirichlet Forms, De Gruyter, 2003.

    Google Scholar 

  9. N. Bouleau, Financial Markets and Martingales, Observations on Science and Speculation, Springer, 2004.

    Google Scholar 

  10. N. Bouleau, Théorème de Donsker et formes de Dirichlet, Bull. Sci. Math., 129 (2005), 369–380.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Bouleau, Improving Monte Carlo simulations by Dirichlet forms, C.R. Acad. Sci. Paris, Ser I, 2005.

    Google Scholar 

  12. N. Bouleau, When and how an error yields a Dirichlet form, J. of Functional Analysis, 240(2) (2006), 445–494.

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Bouleau and F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter, 1991.

    Google Scholar 

  14. M. E. Caballero, B. Fernandez, and D. Nualard, Estimation of densities and applications, J. of Theoretical Prob., 11(3) (1998).

    Google Scholar 

  15. L. Denis, A. Grorud, and M. Pontier, Formes de Dirichlet sur un espace de Wiener-Poisson, application au grossissement de filtration, Sém. Prob. XXXIV, Lect. N. in Math., 1729 (1999), Springer.

    Google Scholar 

  16. D. Duffie and P. Protter, From discrete to continuous time finance: weak convergence of the financial gain process, (1989), unpublished, cited in [40].

    Google Scholar 

  17. Y. El Kahtib and N. Privault, Computation of Greeks in a market with jumps via Malliavin calculus, Finance and Stoch., 8 (2004), 161–179.

    Article  MathSciNet  Google Scholar 

  18. M. Emery, Stochastic calculus on Manifolds, Springer, 1989.

    Google Scholar 

  19. M. Errami and F. Russo, Covariation de convolution de martingales, C.R. Acad. Sci. Paris, s1, 326 (1998), 601–609.

    MATH  MathSciNet  Google Scholar 

  20. D. Feyel and A. de La Pradelle, On fractional Brownian processes, Potential Anal., 10(3) (1999), 273–288.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Flandoli, F. Russo, and J. Wolf, Some SDEs with distributional drift, I. General calculus, Osaka J. Math., 40(2) (2003), 493–542.

    MATH  MathSciNet  Google Scholar 

  22. H. Föllmer, Dirichlet processes, in Stochastic Integrals, Lect. Notes in Math., 851 (1981), 476–478.

    Article  Google Scholar 

  23. H. Föllmer, Calcul d’Ito sans probabilité, in Sém. Prob. XV, Lect. N. in Math., Springer, 850 (1981), 143–150.

    Google Scholar 

  24. H. Föllmer, P. Protter, and A. N. Shiryaev, Quadratic covariation and an extension of Ito’s formula, Bernoulli, 1 (1995), 149–169.

    Article  MATH  MathSciNet  Google Scholar 

  25. E. Fournié, J. M. Lasry, J. Lebuchoux, P. L. Lions, and N. Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance and Stoch., 3 (1999), 391–412.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Fournié, J. M. Lasry, J. Lebuchoux, and P. L. Lions, Applications of Malliavin calculus to Monte Carlo methods in finance II, Finance and Stoch., (2001), 201–236.

    Google Scholar 

  27. M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, 1980.

    Google Scholar 

  28. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter, 1994.

    Google Scholar 

  29. E. Gobet and A. Kohatsu-Higa, Computation of Greeks for barrier and lookback options using Malliavin calculus, Electron. Com. in Prob., 8 (2003), 51–62.

    MATH  MathSciNet  Google Scholar 

  30. M. Gradinaru and I. Nourdin, Approximation at first and second order of the mvariation of the fractional Brownian motion, Electron. Com. Prob., 8 (2003), 1–26.

    MathSciNet  Google Scholar 

  31. M. Gradinaru, F. Russo, and P. Vallois, Generalized covariation, local time and Stratonowich-Ito’s formula for fractional Brownian motion with Hurst index ≥ 1/4, Annals of Prob., 31(4) (2003), 1772–1820.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Hayashi and P. A. Mykland, Evaluating hedging errors: an asymptotic approach, Math. Finance, 15(2) (2005), 309–343.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Jacod, Théorèmes limites pour les processus, Lect. Notes Math., Springer, 1117 (1985).

    Google Scholar 

  34. J. Jacod, A. Jakubowski, and J. Mémin, About asymptotic errors in discretization processes, Ann. of Prob., 31 (2003), 592–608.

    Article  MATH  Google Scholar 

  35. J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations, Ann. Probab., 26 (1998), 267–307.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, 1987.

    Google Scholar 

  37. A. Jakubowski, J. Mémin, and G. Pagès, Convergence en loi des suites d’intégrales stochastiques sur l’espace de Skorokhod, Probab. Th. Rel. Fields, 81 (1989), 111–137.

    Article  MATH  Google Scholar 

  38. A. Kohatsu-Higa and R. Pettersson, Variance reduction methods for simulation of densities on Wiener space, SIAM J. Numer. Anal., 40(2) (2002), 431–450.

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Kurtz and Ph. Protter, Wong-Zakai corrections, random evolutions and simulation schemes for SDEs, in: Stochastic Analysis, Acad. Press, (1991), 331–346.

    Google Scholar 

  40. T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035–1070.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. A. Leon, R. Navarro, and D. Nualart, An anticipating calculus approach to the utility maximization of an insider, Math. Finance, 13(1) (2003), 171–185.

    Article  MATH  MathSciNet  Google Scholar 

  42. Y. Le Jan, Mesures associées à une forme de Dirichlet, applications, Bull. Soc. Math. France, 106 (1978), 61–112.

    MathSciNet  Google Scholar 

  43. T. Lyons and W. Zheng, A crossing estimate for the canonical process on a Dirichlet space and tightness result, in: Colloque Paul Lévy, Astérisque, 157–158 (1998), 249–271.

    Google Scholar 

  44. Z. M. Ma and M. Röckner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer, 1992.

    Google Scholar 

  45. P. Malliavin and A. Thalmaier, Numerical error for SDE: Asymptotic expansion and hyperdistributions, C.R. Acad. Sci. Paris, ser. I, 336 (2003), 851–856.

    MATH  MathSciNet  Google Scholar 

  46. P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer, 2006.

    Google Scholar 

  47. M. Mensi and N. Privault, Conditional calculus and enlargement of filtration on Poisson space, Stoch. Anal. and Appl., 21 (2003), 183–204.

    Article  MATH  MathSciNet  Google Scholar 

  48. P.-A. Meyer, Géométrie différentielle stochastique, in: Sém. Prob. XVI suppl., Lect. N. in Math., Springer, 921 (1982), 165–207.

    Google Scholar 

  49. N. Nualart, The Malliavin Calculus and Related Topics, Springer, 1995.

    Google Scholar 

  50. Y. Oshima, On a construction of Markov processes associated with time dependent Dirichlet spaces, Forum Math., 4 (1992), 395–415.

    Article  MATH  MathSciNet  Google Scholar 

  51. H. Rootzén, Limit distribution for the error in approximation of stochastic integrals, Ann. Probab., 8 (1980), 241–251.

    Article  MATH  MathSciNet  Google Scholar 

  52. F. Russo and P. Vallois, The generalized covariation process and Itô formula, Stochastic Proc. Appl., 59 (1995), 81–104.

    Article  MATH  MathSciNet  Google Scholar 

  53. F. Russo and P. Vallois, Itô formula for C 1-functions of semi-martingales, Prob. Th. Rel. Fields, 104 (1996), 27–41.

    Article  MATH  MathSciNet  Google Scholar 

  54. F. Russo and P. Vallois, Stochastic calculus with respect to a finite quadratic variation process, Stochastics and Stoch. Rep., 70 (2000), 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  55. F. Russo, P. Vallois, and J. Wolf, A generalized class of Lyons-Zheng processes, Bernoulli, 7(2) (2001), 363–379.

    Article  MATH  MathSciNet  Google Scholar 

  56. L. Schwartz, Géométrie différentielle du 2ème ordre, semi-martingales et équations différentielles stochastiques sur une variété différentielle, in: Sém. Prob. XVI suppl., Lect. N. in Math., Springer, 921 (1982), 1–150.

    Google Scholar 

  57. L. Słomiński, Stability of strong solutions of stochastic differential equations, Stochastic Process. Appl., 31 (1989), 173–202.

    Article  MathSciNet  MATH  Google Scholar 

  58. W. Stannat, The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Mem. Amer. Math. Soc., 142(678) (1999).

    Google Scholar 

  59. G. Trutnau, Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions, Osaka J. Math., 37(2) (2000), 315–343.

    MATH  MathSciNet  Google Scholar 

  60. J. Wolf, An Ito formula for Dirichlet processes, Stochastics and Stoch. Rep., 62(2) (1997), 103–115.

    MATH  Google Scholar 

  61. E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), 1560–1564.

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Zahle, Integration with respect to fractal functions and stochastic calculus, Prob. Th. Rel. Fields, 21 (1998), 333–374.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Bouleau, N. (2007). Dirichlet Forms Methods: An Application to the Propagation of the Error Due to the Euler Scheme. In: Dalang, R.C., Russo, F., Dozzi, M. (eds) Seminar on Stochastic Analysis, Random Fields and Applications V. Progress in Probability, vol 59. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8458-6_5

Download citation

Publish with us

Policies and ethics