Skip to main content

Volterra Equations Perturbed by a Gaussian Noise

  • Conference paper

Part of the book series: Progress in Probability ((PRPR,volume 59))

Abstract

We consider, in a Hilbert space U, a class of Gaussian processes defined by a linear filter with a cylindrical Wiener process as input process. This noise is used as an additive perturbation to a family of fractional order (in time) partial differential equations. We give conditions such that the stochastic convolution process is well defined, both in finite time horizon and in an infinite interval. An important example of noise that is contained in the paper is the fractional Brownian motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Alós, O. Mazet, and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29(2) (2001), 766–801.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Alós and D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep., 75(3) (2003), 129–152.

    MathSciNet  Google Scholar 

  3. E. Bajlekova, Fractional Evolution Equations in Banach Spaces, Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001.

    MATH  Google Scholar 

  4. L. Bel, G. Oppenheim, L. Robbiano, and M. C. Viano, Distribution processes with stationary fractional increments, In G. Montseny, editors. Systèmes Différentiels Fractionnaires, volume 5 of ESAIM Proceedings, Paris, 1998 Matignon and Montseny [21], 43–54.

    Google Scholar 

  5. S. Bonaccorsi and L. Tubaro, Mittag-Leffler’s function and stochastic linear Volterra equations of convolution type, Stochastic Anal. Appl., 21(1) (2003), 61–78.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ph. Carmona, L. Coutin, and G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 39(1) (2003), 27–68.

    Article  MATH  MathSciNet  Google Scholar 

  7. Ph. Clément and G. Da Prato, Some results on stochastic convolutions arising in Volterra equations perturbed by noise, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7(3) (1996), 147–153.

    MATH  MathSciNet  Google Scholar 

  8. Ph. Clément and G. Da Prato, White noise perturbation of the heat equation in materials with memory, Dynam. Systems Appl., 6(4) (1997), 441–460.

    MATH  MathSciNet  Google Scholar 

  9. Ph. Clément, G. Da Prato, and J. Prüss, White noise perturbation of the equations of linear parabolic viscoelasticity, Rend. Istit. Mat. Univ. Trieste, 29(1–2) (1998), 207–220.

    Google Scholar 

  10. F. Comte and E. Renault, Long memory continuous time models, J. Econometrics, 73(1) (1996), 101–149.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  12. L. Decreusefond and A. S. Üstünel, Fractional Brownian motion: theory and applications, In G. Montseny, editors. Systèmes Différentiels Fractionnaires, volume 5 of ESAIM Proceedings, Paris, 1998 Matignon and Montseny [21], 75–86.

    Google Scholar 

  13. L. Decreusefond and A. S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal., 10(2) (1999), 177–214.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14(3) (2002), 433–440.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. III. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

    MATH  Google Scholar 

  16. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Boston, 1994.

    MATH  Google Scholar 

  17. G. Gripenberg, Ph. Clément, and S. O. Londen, Smoothness in fractional evolution equations and conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29(1) (2000), 231–251.

    MATH  MathSciNet  Google Scholar 

  18. K. W. Homan, An Analytic Semigroup Approach to Convolution Volterra Equations, Dissertation, Delft University, 2003.

    Google Scholar 

  19. A. Karczewska, Stochastic Volterra convolution with Lévy process, Int. J. Pure Appl. Math., 18(1) (2005), 109–120.

    MATH  MathSciNet  Google Scholar 

  20. B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Matignon and G. Montseny, editors. Systèmes Différentiels Fractionnaires, volume 5 of ESAIM Proceedings, Paris, 1998. Société de Mathématiques Appliquées et Industrielles.

    Google Scholar 

  22. I. Norros, E. Valkeila, and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli, 5(4) (1999), 571–587.

    MATH  MathSciNet  Google Scholar 

  23. V. Pipiras and M.S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields, 118(2) (2000), 251–291.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser Verlag, Basel, 1993. Monographs in Mathematics, 87.

    MATH  Google Scholar 

  25. S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives. Theory and applications. Gordon and Breach Science Publishers, Yverdon, 1993.

    Google Scholar 

  26. E. Wong and B. Hajek, Stochastic Processes in Engineering Systems. Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Bonaccorsi, S. (2007). Volterra Equations Perturbed by a Gaussian Noise. In: Dalang, R.C., Russo, F., Dozzi, M. (eds) Seminar on Stochastic Analysis, Random Fields and Applications V. Progress in Probability, vol 59. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8458-6_4

Download citation

Publish with us

Policies and ethics