Skip to main content

Generalizations of Merton’s Mutual Fund Theorem in Infinite-Dimensional Financial Models

  • Conference paper
Seminar on Stochastic Analysis, Random Fields and Applications V

Part of the book series: Progress in Probability ((PRPR,volume 59))

Abstract

This is a review paper, concerning some extensions of the celebrated Merton’s mutual fund theorem in infinite-dimensional financial models, in particular, the so-called Large Financial Markets (where a sequence of assets is taken into account) and Bond Markets Models (where there is a continuum of assets).

In order to obtain these results, an infinite-dimensional stochastic integration theory is essential: the paper illustrates briefly a new theory introduced to this extent by M. De Donno and the author.

This work is the result of discussions and collaboration with Marzia De Donno.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ansel and C. Stricker, Couverture des actifs contingents and prix maximum, Ann. Inst. H. Poincaré, 30 (1994), 303–315.

    MATH  MathSciNet  Google Scholar 

  2. T. Björk, Arbitrage Theory in Continuous Time, Oxford University Press, Second Edition, 2004.

    Google Scholar 

  3. T. Björk, G. Di Masi, Y. Kabanov, and W. Runggaldier, Towards a general theory of bond markets, Finance Stoch., 1 (1997), 141–174.

    Article  MATH  Google Scholar 

  4. T. Björk and B. Näslund, Diversified porfolios in continuous time, European Finance Review, 1 (1999), 361–378.

    Article  Google Scholar 

  5. R. Carmona and M. Tehranchi, A characterization of hedging portfolios for interest rates contingent claims, Ann. Appl. Prob., 14 (2004), 1267–1294.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. C. Cox and C. F. Huang, Optimum consumption and portfolio policies when asset prices follow a diffusion process, J. Econ. Theory, 49 (1989), 33–83.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. De Donno, A note on completeness in large financial markets, Math. Finance, 14 (2004), 295–315.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. De Donno, The term structure of interest rates as a random field: a stochastic integration approach, Stoch. Processes and Applications to Math. Finance, Proceedings of the Ritsumeikan University Int. Symposium, (2004), 27–51.

    Google Scholar 

  9. M. De Donno, P. Guasoni, and M. Pratelli, Super-replication and utility maximization in large financial markets, Stoch. Proc. Appl., 115(12) (2005), 2006–2022.

    Article  MATH  Google Scholar 

  10. M. De Donno and M. Pratelli, Stochastic integration with respect to a sequence of semimartingales, Séminaire de Probabilités 39, Lect. Notes Math., Springer, 1874 (2006), 119–135.

    Google Scholar 

  11. M. De Donno and M. Pratelli, A theory of stochastic integration for bond markets, Ann. Appl. Probab., 15(4) (2005), 2773–2791.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann., 300 (1994), 463–520.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, Springer, 2006.

    Google Scholar 

  14. N. Dunford and J.T. Schwartz, Linear Operators I, Interscience Publishers, Wiley, 1988.

    MATH  Google Scholar 

  15. I. Ekeland and E. Taflin, A theory of bond portfolios, Ann. Appl. Prob., 15 (2005), 1260–1305.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. El Karoui and M. C. Quenez, Dynamic programming and pricing of contingent claims in an incomplete market, SIAM J. Control Optimiz., 33 (1995), 29–66.

    Article  MATH  Google Scholar 

  17. M. Émery, Une topologie sur l’espace des semimartingales, Séminaire de Probabilités XIII, Springer Lecture Notes in Math., 784 (1980), 152–160.

    Google Scholar 

  18. Y. Kabanov and D. Kramkov, Large financial markets: asymptotic arbitrage and contiguity, Prob. Theory and its Applications, 39 (1996), 222–229.

    MathSciNet  Google Scholar 

  19. Y. Kabanov and D. Kramkov, Asymptotic arbitrage in large financial markets, Finance Stoch., 2 (1998), 143–172.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Karatzas, J. P. Lehoczky, and S. E. Shreve, Optimal portfolio and consumption decisions for a small investor on a finite horizon, SIAM J. Control Optimiz., 25 (1987), 1557–1586.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Karatzas, J. P. Lehoczky, S. E. Shreve, and G. L. Xu, Martingale and duality methods for utility maximization in an incomplete market, SIAMJ. Control Optimiz., 29 (1991), 702–730.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Khanna and M. Kulldorf, A generalization of the mutual fund theorem, Finance Stochast., 3 (1999), 167–185.

    Article  MATH  Google Scholar 

  23. D. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets, Prob. Theory and Related Fields, 105 (1996), 459–479.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Ann. Appl. Prob., 9 (1999), 904–950.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Kramkov and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets, Ann. Appl. Prob., 13 (2003), 1504–1516.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. M. Markowitz, Portfolio Selection, Wiley, New York, 1959.

    Google Scholar 

  27. J. Mémin, Espace de semi-martingales et changement de probabilité, Z.Wahrscheinlichkeitstheorie verw. Gebiete, 52 (1980), 9–39.

    Article  MATH  Google Scholar 

  28. R. C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case, Rev. Econ. Statist., 51 (1969), 247–257.

    Article  Google Scholar 

  29. R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, J. Econ. Theory, 3 (1971), 373–413.

    Article  MathSciNet  Google Scholar 

  30. H. Pham, A predictable decomposition in an infinite assets model with jumps. Application to hedging and optimal investment in infinite assets models with jumps, Stoch. and Stochastic Reports, 5 (2003), 343–368.

    Article  MathSciNet  Google Scholar 

  31. H. M. Soner, Stochastic Optimal Control in Finance, Pubblicazioni della Scuola Normale Superiore, Pisa, 2004.

    MATH  Google Scholar 

  32. N. Ringer and M. Tehranchi, Optimal portfolio choice in the bond market, 2005, preprint.

    Google Scholar 

  33. N. Touzi, Stochastic Control Problems, Viscosity Solutions ans Application to Finance, Pubblicazioni della Scuola Normale Superiore, Pisa, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Pratelli, M. (2007). Generalizations of Merton’s Mutual Fund Theorem in Infinite-Dimensional Financial Models. In: Dalang, R.C., Russo, F., Dozzi, M. (eds) Seminar on Stochastic Analysis, Random Fields and Applications V. Progress in Probability, vol 59. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8458-6_28

Download citation

Publish with us

Policies and ethics