Skip to main content

Interpretation of 1992–1994 Gravity Changes around Mayon Volcano, Philippines, Using Point Sources

  • Conference paper
Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 1002 Accesses

Abstract

Significant gravity changes observed around the Mayon Volcano (Philippines) between 1992 and 1994 at 26 stations are interpreted in terms of an increase of mass and pressure changes at several point sources modelled using a fast inversion process. This inversion approach attempts to fit gravity and elevation changes by combining a random search for the positions of the sources and a linear least-squares fit for the incremental mass, pressure and possible common regional values for gravity or elevation changes. Some stabilizer terms are included in the misfit function. Models with one and two sources were tested against the observed changes at Mayon. Models with only one-source give a best fit for a shallow source with a positive mass increment, horizontally displaced far from the summit. The study using two sources gives a best fit that is similar to the one-source model, but in addition indicates anomalous behavior at stations in the SW. Neglecting the stations located southward from a local fracture, the best-fitting model suggests one central positive mass change source, which is likely to be an intrusion of about 0.5 MU with a depth of about 5 km beneath the volcano. Standard deviation for the residuals ranges from 7–8 µGal for one-source models to 6–7 µGal for models with two sources. Both of the cases are below the error value of 9.4 µGal estimated for the gravity data, so that it is not possible to discriminate between both possible interpretations without additional information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aurelio, M.A. (2000), Tectonics of the Philippines revisited, J. Geol. Soc. Philippines 55, 119–183.

    Google Scholar 

  • Aurelio, M., Barrier, E., Goulon, R. and Rangin, C. (1997), Deformation and stress states along the central segment of the Philippine Fault: Implications to wrench fault tectonics. J. Asian Sci. 15(2–3), 107–119.

    Google Scholar 

  • Bertete-Aguirre, H., Cherkaev, E. and Oristaglio, M. (2002), Non-smooth gravity problem with total variation penalization functional, Geophys. J. Int. 149, 499–507.

    Article  Google Scholar 

  • Bonafede, M. and Mazzanti, M. (1998), Modeling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy), J. Volcanol. Geoth. Res. 81, 137–157.

    Article  Google Scholar 

  • Boulanger, O. and Chouteau, M. (2001), Constraints in 3D gravity inversion, Geophys. Prospecting 49, 265–280.

    Article  Google Scholar 

  • Davis, R.O. and Selvadurai, A.P.S., Elasticity and Geomechanics (Cambridge Univ. Press 1996) 201 pp.

    Google Scholar 

  • Eggers, A. (1987), Residual gravity changes and eruption magnitudes, J. Volcanol. Geotherm. Res. 33, 201–216.

    Article  Google Scholar 

  • Farquharson, C.G. and Oldenbourg, D.W. (1998), Non-linear inversion using general measures of data misfit and model structure, Geophys. J. Int. 134, 213–227.

    Article  Google Scholar 

  • Fernández, J. and Rundle, J. (1994a), Gravity changes and deformation due to a magmatic intrusion in a two-layered crustal model, J. Geophys. Res. 99, 2737–2746.

    Article  Google Scholar 

  • Fernández, J. and Rundle, J. (1994b), FORTRAN program to compute displacement, potential and gravity changes due to a magma intrusion in a multilayered Earth model, Comp. Geosci. 20, 461–510.

    Article  Google Scholar 

  • Fernández, J., Tiampo, K. F., Jentzsch, G., Charco, M. and Rundle, J. B. (2001), Inflation or deflation? New results for Mayon Volcano applying elastic-gravitational modeling, Geophys. Res. Lett. 28, 2349–2352.

    Article  Google Scholar 

  • Fernández, J., Tiampo, K.F., Rundle, J.B. and Jentzsch, G. (2005), On the interpretation of vertical gravity gradients produced by magmatic intrusions, J. Geodyn. 39, 475–492. doi: 10.1016/j.jog.2005.04.005.

    Article  Google Scholar 

  • Gottsmann, J. and Rymer, H. (2002), Deflation during caldera unrest: Constraints on subsurface processes and eruption prediction from gravity-height data, Bull. Volcanol. 64, 338–348.

    Article  Google Scholar 

  • Gottsmann, J., Berrino, G., Rymer, H. and Williams-Jones, G. (2003), Hazard assessment during caldera unrest at the Campi Flegrei: a contribution from gravity-height gradients. Earth Planet. Sci. Lett. 211, 295–309.

    Article  Google Scholar 

  • Jahr, T., Jentzsch, G. and Diao, E. (1995), Microgravity measurements at Mayon Volcano, Luzon, Philippines, Cahiers du Centre Européen de Géodynamique et de Séismologie, vol. 8, Proc. of the Workshop: New Challenges for Geodesy in Volcanoes Monitoring, June 14–16, 1993, Walferdange, Luxembourg, 307–317.

    Google Scholar 

  • Jahr, T., Jentzsch, G., Punongbayan, R.S., Schreiber, U., Seeber, G., Völksen, C. and Weise, A. (1998), Mayon Volcano, Philippines: Improvement of hazard assessment by microgravity and GPS? Proc.Int. Symp. On Current Crustal Movement and Hazard Assessment (IUGG, IAG), Wuhan. Seismological Press, Beijing, pp. 599–608.

    Google Scholar 

  • Jentzsch, G., Punongbayan, R.S., Schreiber, U., Seeber, G., Völksen, C. and Weise, A. (2001), Mayon volcano, Philippines: Change of monitoring strategy after microgravity and GPS measurements, J. Volcanol. Geotherm. Res. 109/1–3, 219–234.

    Article  Google Scholar 

  • Jentzsch, G., Weise, A., Rey, C. and Gerstenecker, C. (2004), Gravity changes and internal processes: Some results obtained from observations at three volcanoes, Pure Appl. Geophys. 161, 1415–1431. DOI 10.1007/s00024-004-2512-7.

    Article  Google Scholar 

  • Lagmay, A.M.F., Tenonciang, A.M.P. and Uy, H.S. (2005), Structural setting of the Bicol Basin and kinematic analysis of fractures on Mayon Volcano, Philippines, J. Volcanol. Geotherm. Res. Doi:10.1016/j.jvolgeores.2004.11.015

    Google Scholar 

  • Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull. Earth. Res. Inst. Tokyo 36, 99–134.

    Google Scholar 

  • Newhall, C.G. (1979), Temporal variation in the lavas of Mayon Volcano, Philippines, J. Volcanol. Geotherm. Res. 6, 61–83.

    Article  Google Scholar 

  • Rundle, J.B. (1980), Static elastic-gravitational deformation of a layered half space by point couple sources, J. Geophys. Res. 85, 5355–5363.

    Article  Google Scholar 

  • Rundle, J.B. (1982), Deformation, gravity, and potential changes due to volcanic loading in the crust, J. Geophys. Res. 87(B13), 10,729–10,744.

    Google Scholar 

  • Rymer, H. and Williams-Jones, G. (2000), Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements, Geophys. Res. Lett. 27, 2389–2392.

    Article  Google Scholar 

  • Sambridge, M. and Mosegaard, K. (2002), Monte Carlo methods in geophysical inverse problems, Rev. Geophys. 40, 3, doi:10.1029/2001GC000213.

    Article  Google Scholar 

  • Tarantola, A., Inverse Problem Theory (Elsevier, Amsterdam 1987)

    Google Scholar 

  • Tiampo, K., Fernández, J., Jentzsch, G., Charco, M. and Rundle, J. (2004a), New results at Mayon, Philippines from a joint inversion of gravity and deformation measurements, Pure Appl. Geophys. 161, 1433–1452.

    Article  Google Scholar 

  • Tiampo, K., Fernández, J., Jentzsch, G., Charco, M. and Rundle, J. (2004b), Volcanic source inversion using a genetic algorithm and an elastic-gravitational layered earth model for magmatic intrusions, Comp. Geosci. 30, 985–1001.

    Article  Google Scholar 

  • Tiede, C., Tiampo, K., Fernández, J. and Gerstenecker, C. (2005), Deeper understanding of nonlinear geodetic data inversion using a quantitative sensitivity analysis, Nonlinear Processes in Geophys. 12, 373–379.

    Google Scholar 

  • Völksen, C. and Seeber, G. (1995), Establishment of a GPS based control network at Mayon Volcano, Cahiers du Centre Européen de Géodynamique et de Séismologie, vol. 8, Proc. of the Workshop: New Challenges for Geodesy in Volcanoes Monitoring, June 14–16, 1993, Walferdange, Luxembourg, 307–317.

    Google Scholar 

  • Williams-Jones, G. and Rymer, H. (2002), Detecting volcanic eruption precursors: A new method using gravity and deformation measurements, J. Volcanol. Geotherm. Res. 113, 379–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag, Basel

About this paper

Cite this paper

Camacho, A.G., Fernández, J., Charco, M., Tiampo, K.F., Jentzsch, G. (2007). Interpretation of 1992–1994 Gravity Changes around Mayon Volcano, Philippines, Using Point Sources. In: Wolf, D., Fernández, J. (eds) Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8417-3_7

Download citation

Publish with us

Policies and ethics