Skip to main content

Shear-wave Velocity Structure around Teide Volcano: Results Using Microtremors with the SPAC Method and Implications for Interpretation of Geodetic Results

  • Conference paper
  • First Online:
  • 1004 Accesses

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Deformation analysis and simulation of volcanic edifices require the construction of models of elastic properties of those structures. In this paper we present an analysis of microtremor measurements recorded during the performance tests of two temporary seismic arrays installed in the eastern portion of the Teide caldera in 1994. We take advantage of recent developments of the SPAC method and use spatial cross-correlation computations to estimate phase velocity dispersion of Rayleigh waves at the location of the arrays. We show that the extension of the standard SPAC method is valid in the case of our data, justifying its use and supporting the generalization of the SPAC method to single station pairs. The phase velocity dispersion curve obtained was inverted to recover the shear-wave profile at the site of the arrays. Our results indicate that the subsoil structure of the caldera is laterally homogeneous at the scale of a few km about the location of the arrays. We obtained about 315 m of volcanic sediments overlying rocks with a shear-wave velocity of 2 km/s. These results are robust and are a starting point to further modelling of deformation, permanent or transient, at this volcanic edifice, which can be useful in the interpretation of different observed fields. In fact, the computation of deformations and gravity changes due to possible volcanic intrusions in two models; one considering the volcanic sediments and the other without considering them, provided different results in the near field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablay, G. and Hürlimann, M. (2000), Evolution of the north flank of Tenerife by recurrent giant landslides, J. Volcan. Geotherm. Res. 103, 135–159.

    Article  Google Scholar 

  • Ablay, G. and Kearey, P. (2000), Gravity constraints on the structure and volcanic evolution of Tenerife, Canary Islands, J. Geophys. Res. 105, 5783–5796.

    Article  Google Scholar 

  • Ablay, G.J. and Martí, J. (2000), Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands, J. Volcan. Geotherm. Res. 103, 175–208.

    Article  Google Scholar 

  • Aki, K. (1957), Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst. Tokyo University, 25, 415–457.

    Google Scholar 

  • Almendros, J., Ibáñez, J., Alguacil, G., Morales, J., Del Pezzo, E., La Rocca, M., Ortiz, R., Araña, V., and Blanco, M.J. (2000), A double seismic antenna experiment at Teide Volcano: Existence of local seismicity and lack of evidences of volcanic tremor, J. Volcan. Geotherm. Res. 103, 439–462.

    Article  Google Scholar 

  • Almendros, J., Luzón, F., and Posadas, A. (2004) Microtremors analysis at Teide Volcano (Canary Islands, Spain): Assessment of natural frequencies of vibration using time-dependent horizontal-to-vertical spectral ratios, Pure Appl. Geophys. 161, 1579–1596.

    Article  Google Scholar 

  • Ancochea, E., Fúster, J., Ibarrola, E., Cendrero, A., Coello, J., Hernán, F., Cantagrel, J., and Jamond, C. (1990), Volcanic evolution of the Island of Tenerife (Canary Islands) in the light of new K-Ar data, J. Volcan. Geotherm. Res. 44, 231–249.

    Article  Google Scholar 

  • Ancochea, E., Huertas, M.J., Cantagrel, J.M., Coello, J., Fúster, J.M., Arnaud, N., and Ibarrola, E. (1999), Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands), J. Volcan. Geotherm. Res. 88, 177–199.

    Article  Google Scholar 

  • Anguita, F. and Hernán, F. (2000), The Canary Islands: A unifying model, J. Volcan. Geotherm. Res. 103, 1–26.

    Article  Google Scholar 

  • Araña, V. and Carracedo, J.C., Tenerife, in Los volcanes de las Islas Canarias (ed. Rueda) (Madrid 1978).

    Google Scholar 

  • Araña, V. and Ortiz, R. (1991), The Canary Islands: Tectonics, magmatism and geodynamic framework. In Magmatism in Extensional Structural Settings: The Phanerozoic African Plate, (ed. Kampunzu, A., Lubala, R.) (Springer-Verlag 1991) pp. 209–249.

    Google Scholar 

  • Araña, V., Camacho, A.G., García, A., Montesinos, F.G., Blanco, I., Vieira, R., and Felpeto, I. (2000), Internal structure of Tenerife (Canary Islands) based on gravity, aeromagnetic, and volcanological data, J. Volcan. Geotherm. Res. 103, 43–64.

    Article  Google Scholar 

  • Bard, P.-Y. Microtremor measurements: A tool for site effect estimation? In The Effects of Surface Geology on Seismic Motion (eds. Irikura, Kudo, Okada and Sasatani) (Balkema, Rotterdam (1999) pp. 1251–1279.

    Google Scholar 

  • Bartel, B.A., Hamburger, M.W., Merterns, C.M., and Lowry, A.R. (2003), Dynamics of active magmatic and hydrotermal systems at Taal volcano, Philippines, from continuous GPS measurements. J. Geophys. Res. 108, 2475, doi: 10.1029/2002JB002194.

    Article  Google Scholar 

  • Baskir, E. and Weller, C.E. (1975), Sourceless reflection seismic exploration, Geophysics 40,1, 158–159.

    Google Scholar 

  • Blanco, I. (1997), Análisis e interpretación de las anomalías magnéticas de tres calderas volcánicas: Decepción (Shetland del Sur, Antártida), Furnas (San Miguel, Azores) y Las Cañadas del Teide (Tenerife, Canarias) (Ph. D. Thesis, Universidad Complutense de Madrid).

    Google Scholar 

  • Bosshard, E. and Macfarlane, D.J., (1970), Crustal structure of the western Canary Islands from seismic refraction and gravity data,. J. Geophys. Res. 75, 4901–4918.

    Google Scholar 

  • Burgmann, R., Rosen, P.A., and Fielding, E.J. (2000), Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28, 169–209.

    Article  Google Scholar 

  • Camacho, A.G., Montesinos, F. G., and Vieira, R., (1991), Microgravimetric model of the Las Cañadas caldera (Tenerife), J. Volcan. Geotherm. Res. 47, 75–88.

    Article  Google Scholar 

  • Camacho, A.G., Montesinos, F.G., and Vieira, R. (1996), Gravimetric structure of the Teide Volcano environment. In Proceed. of the Second Workshop on European Lab. Volcanoes (Santorini, Greece 1996) pp. 605–613.

    Google Scholar 

  • Canales, J.P., Dañobeitia, J.J., and Watts, A.B. (2000), Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands, J. Volcan. Geotherm. Res. 103, 65–81.

    Article  Google Scholar 

  • Carracedo, J.C., Day, S., Guillou, H., Rodríguez, E., Canas, J.A., and Pérez, F.J. (1998), Hotspot volcanism close to a passive continental margin, Geol. Mag. 135, 591–604.

    Article  Google Scholar 

  • Chávez-García, F.J. and Luzón, F. (2005), On the correlation of seismic microtremors, J. Geophys. Res. 110,B11, B11313, doi: 10.1029 /2005JB003671.

    Article  Google Scholar 

  • Chávez-García, F.J., Rodríguez, M. and Stephenson, W.R. (2005), An alternative approach to the SPAC analysis of microtremors: Exploiting the stationarity of noise, Bull. Seism. Soc. Am. 95, 277–293.

    Article  Google Scholar 

  • Chouet, B., De Luca, G., Milana, G., Dawson, P., Martini, M., and Scarpa R. (1998), Shallow velocity structure of Stromboli Volcano, Italy, derived from small-aperture array measurements of Strombolian tremor, Bull. Seismol. Soc. Am. 88, 653–666.

    Google Scholar 

  • Cole, S. (1995), Passive seismic and drill-bit experiments using 2-D arrays, Ph.D. Thesis, Standford University.

    Google Scholar 

  • Dañobeitia, J.J. and Canales, J.P. (2000), Magmatic underplating in the Canary Archipielago, J. Volcan. Geotherm. Res. 103, 27–42.

    Article  Google Scholar 

  • Del Pezzo, E., La Rocca, M., and Ibáñez, J. (1997), Observations of high-frequency scattered waves using dense arrays at Teide Volcano, Bull. Seismol. Soc. Am. 87, 1637–1647.

    Google Scholar 

  • DeLuca, G., Scarpa, R., DelPezzo, E., and Simini, M. (1997), Shallow structure of Mt. Vesuvius Volcano, Italy, from seismic array analysis, Geophys. Res. Lett. 24, 481–484.

    Article  Google Scholar 

  • Dixon, T.H., Mao, A., Bursik, M., Heflin, M., Langbein, J., Stein, R., and Webb, F. (1997), Continuous monitoring of surface deformation at Long Valley Caldera, California, with GPS. J. Geophys. Res. 102, 12017–12034.

    Article  Google Scholar 

  • D’Silva, S. (1996). Theoretical foundations of time-distance heliosismology, The Astrophys. J. 469, 964–975.

    Article  Google Scholar 

  • Duvall Jr. T.L., Jefferies, S.M., Harvey, J.W. and Pomerantz, M.A. (1993), Time-Distance Helioseismology Nature 362, 430–432.

    Article  Google Scholar 

  • Dziewonski, A.M. and Anderson, D.L. (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter. 25, 297–356.

    Article  Google Scholar 

  • Dzurisin, D., (2003), A comprehensive approach to monitoring volcano deformation as a window on the eruptive cycle, Rev. Geophys. 41(1), 1001, doi: 10.1029/2001RG000107 (Correction: 2003, 41(2), 1009, doi: 10.1029/2003RG000134).

    Article  Google Scholar 

  • Fernández, J. and Rundle, J.B. (1994a), Gravity changes and deformation due to a magmatic intrusion in a two-layered crustal model, J. Geophys. Res. 99, 2737–2746.

    Article  Google Scholar 

  • Fernández, J. and Rundle, J.B. (1994b), FORTRAN program to compute displacement, potential and gravity changes due to a magma intrusion in a multilayered Earth model, Comput. Geosci. 20, 461–510.

    Article  Google Scholar 

  • Fernández, J. and Díez, J.L., (1995), Volcano monitoring design in Canary Islands by deformation model, Cahiers du Centre Européen de Géodynamique et de Séismologie 8, 207–217.

    Google Scholar 

  • Fernández, J., Rundle, J.B., Granell, R.D.R., and Yu, T.-T. (1997), Programs to compute deformation due to a magma intrusion in elastic-gravitational layered Earth models, Comput. Geosci. 23, 231–249.

    Article  Google Scholar 

  • Fernández, J., Carrasco, J.M., Rundle, J.B., and Araña, V. (1999), Geodetic methods for detecting volcanic unrest. A theoretical approach, Bull. Volcanol. 60, 534–544.

    Article  Google Scholar 

  • Fernández, J., Tiampo, K.F., Rundle, J.B., and Jentzsch, G., (2005), On the interpretation of vertical gravity gradients produced by magmatic intrusions, J. Geody. 39/5, 475–492. doi: 10.1016/j.jog.2005.04.005.

    Article  Google Scholar 

  • Fernández, J. Charco, M., Rundle, J.B., and Tiampo, K.F., (2006), A revision of the FORTRAN codes GRAVW to compute deformation produced by a point magma intrusion in elastic-gravitational layered Earth models. Comp. Geosci. 32/2, 275–281. doi: 10.1016/j.cageo.2005.06.015.

    Article  Google Scholar 

  • Ferrazzini, V., Aki, K., and Chouet, B. (1991), Characteristics of seismic waves composing Hawaiian volcanic tremor and gas-piston events observed by a near-source array, J. Geophys. Res. 96, 6199–6209.

    Google Scholar 

  • García, A., Blanco, I., Torta, M., and Socías, I. (1997), High-resolution aeromagnetic survey of the Teide Volcano (Canary Islands):A preliminary analysis, Annali di Geofisica 40, 329–340.

    Google Scholar 

  • Goldstein, P., D. Dodge, Firpo, M., and Stan, R. (1998), Electronic seismologist: what’s new in sac2000? Enhanced processing and database access, Seism. Res. Lett. 69, 202–205.

    Google Scholar 

  • Henstridge, D.J. (1979), A signal processing method for circular arrays, Geophysics, 44, 179–184.

    Article  Google Scholar 

  • Hernández, P., Pérez, N., Salazar, J., Sato, M., Notsu, K., and Wakita, H. (2000), Soil gas CO 2, CH 4, and H 2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain, J. Volcan. Geotherm. Res. 103, 425–438.

    Article  Google Scholar 

  • Herrmann, R.B. (1987), Computer programs in Seismology, Saint Louis University, 7 vols.

    Google Scholar 

  • Lermo, J. and Chávez-García, F.J. (1994), Are microtremors useful in site response evaluation? Bull. Seism. Soc. Am., 84, 1350–1364.

    Google Scholar 

  • Lobkis, O. I. and Weaver, R. L. (2001), On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am. 110, 3011–3017.

    Article  Google Scholar 

  • Martí, J., Mitjavila, J. and Araña, V. (1994), Stratigraphy, structure and geochronology of the Cañadas Caldera, Geolog. Magazine 131, 715–727.

    Article  Google Scholar 

  • Martí, J. and Gudmundsson, A. (2000), The Las Cañadas Caldera (Tenerife, Canary Islands): An overlapping collapse caldera generated by magma-chamber migration, J. Volcan. Geotherm. Res. 103, 161–173.

    Article  Google Scholar 

  • Metaxian, J.-P. (1994), Etude sismologique et gravimétrique d’un volcan actif: Dynamisme interne et structure de la Caldeira Masaya, Nicaragua, Ph. D. Thesis, Universitéde Savoie, 319 pp, in French.

    Google Scholar 

  • Morgan, W.J. (1983), Hotspot tracks and the early rifting of the Atlantic, Tectonophysics 94, 123–139.

    Article  Google Scholar 

  • Morikawa, H., Toki, K., Sawada, S., Akamatsu, J., Miyakoshi, K., Ejiri, J., and Nakajima, D. Detection of dispersion curves from microseisms observed at two sites. In (K. Irikura, K. Kudo, H. Okada, and T. Sasatani, eds.), The effects of Surface Geology on Seismic Motion; Proc. of the 2nd. Intl. Symp. on the effects of surface geology on seismic motion, Yokohama, 1–3 December, (Rotterdam, Balkema 1998). 2, 719–724.

    Google Scholar 

  • Nikolaev, A.V. and Troitskiy, P.A. (1987), Lithospheric studies based on array analysis of P-coda and microseisms, Tectonophysics, 140, 103–113.

    Article  Google Scholar 

  • Rickett, J. and Claerbout, J. (1999), Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, Leading Edge, 18(8), 957–960.

    Article  Google Scholar 

  • Rickett, J.E. (2001), Spectral Factorization of wavefields and wave operators, Ph.D. Thesis, Standford University.

    Google Scholar 

  • Roux, P., Kuperman, W.A. and the NPAL group (2004), Extracting coherent wavefronts from acoustic ambient noise in the ocean, J. Acoust. Soc. Am. 116, 1995–2003.

    Article  Google Scholar 

  • Rundle, J.B., (1980), Static elastic-gravitational deformation of a layered half space by point couple sources, J. Geophys. Res. 85, 5355–5363.

    Google Scholar 

  • Rundle, J.B. (1982), Deformation, gravity and potential changes due to volcanic loading of the crust, J. Geophys. Res. 87, 10729–10744 (Correction: 1983, 88, 10647–10652).

    Google Scholar 

  • Sabra, K.G., P. Roux, and Kuperman W.A. (2005a), Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic guide, J. Acoust. Soc. Am. 117, 164–174.

    Article  Google Scholar 

  • Sabra, K.G., Gerstoft, P., Roux, P., Kuperman, W.A., and Fehler, M.C. (2005b), Extracting timedomain Greens function estimates from ambient seismic noise, Geophys. Res. Lett. 32, L03310, doi:10.1029/2004GL021862.

    Article  Google Scholar 

  • Sánchez-Sesma, F. J. and Campillo, M. (2006), Retrieval of the Green function from cross-correlation: The canonical elastic problem, Bull. Seismol. Soc. Am. 96, 1182–1191.

    Article  Google Scholar 

  • Segall, P., Cervelli, P., Owen, S., Lisowski, M., and Miklius, A., (2001), Constraints on dike propagation from continuous GPS measurements. J. Geophys. Res. 106, 19301–19317.

    Article  Google Scholar 

  • Sigurdsson, H., Houghton, B., Mcnutt, S.R., Rymer, H., and Stix, J. (Eds.) Encyclopedia of Volcanoes (Academic Press, San Diego, CA, USA. 2000).

    Google Scholar 

  • Stein, S., Lane, M., Hamburger, M., Meertens, C., Dixon, T., and Owen, S., (2000), UNAVCO Conference explores advance in volcanic geodesy. EOS Trans. AGU 81,121, 126.

    Google Scholar 

  • Vieira, R., Toro, C., and Araña, V. (1986), Microgravimetric survey in the caldera of Teide, Tenerife, Canary Islands, Tectonophysics, 130, 249–257.

    Article  Google Scholar 

  • Watts, A.B., Peirce, C., Collier, J., Dalwood, R., Canales, J.P., and Henstock, T.J. (1997), A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands, Earth Planet. Sci. Lett. 146, 431–447.

    Article  Google Scholar 

  • Weaver, R.L. and Lobkis, O.I. (2001), Ultrasonics without a source: Thermal fluctuation correlations at MHz, Phys. Rev. Lett. 87, 134301.

    Article  Google Scholar 

  • Weaver, R.L. and Lobkis, O.I. (2004), Diffuse fields in open systems and the emergence of the Green’s FUNCTION, J. Acoust. Soc. Am. 116, 2731–2734.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag, Basel

About this paper

Cite this paper

Chávez-García, F.J., Luzón, F., Raptakis, D., Fernández, J. (2007). Shear-wave Velocity Structure around Teide Volcano: Results Using Microtremors with the SPAC Method and Implications for Interpretation of Geodetic Results. In: Wolf, D., Fernández, J. (eds) Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8417-3_5

Download citation

Publish with us

Policies and ethics