Skip to main content

A Hybrid Model for the Summit Region of Merapi Volcano, Java, Indonesia, Derived from Gravity Changes and Deformation Measured between 2000 and 2002

  • Conference paper
  • First Online:
Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Three-dimensional displacements and gravity changes were measured at 20 points between 2000 and 2002 at Merapi volcano, Java, Indonesia. Former models focused on the modeling of a single magmatic source located in the summit region of the volcano. Such models do not fit to our measurements between 2000 and 2002. A new hybrid model approach is developed consisting of an elastic-gravitational source described by a mass and energy term as well as a combined dip-slip/strike-slip fault zone in the summit region. Both nonlinear optimization problems, given by the common inversion of three-dimensional displacements and gravity changes, are solved by applying a genetic algorithm. The hybrid model fits the measurements accurately, tested by Fisher test statistics. Furthermore, our model for Merapi volcano confirms previous structural models for this region so that the new model is statistically proven as well as physically reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beauducel, F. and Cornet, F. (1999), Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano, Java, J. Geophys. Res. 104, 725–736.

    Article  Google Scholar 

  • Beauducel, F., Cornet, F., Suhanto, E., Duquesnoy, T., and Kasser, M. (2000), Constraints on magma flux from displacements data at merapi volcano, Java, Indonesia, J. Geophys. Res. 105, 8193–8204.

    Article  Google Scholar 

  • Berthommier, P. (1990), Etude Volcanologique du Merapi (Central Java): Téphrostratigraphic et chronologie-produits éruptifs, Ph.D. Thesis, Université Blaise Pascal, Clement Ferrand, France.

    Google Scholar 

  • Camacho, A., Fernández, J., Charco, M., Tiampo, K., and Jentzsch, G. (2007), Interpretation of 1992–1994 gravity Changes in Mayon volcano, Philippines, using point sources, Pure Appl. Geophys., this volume.

    Google Scholar 

  • Camus, G., Gourgaud, A., Mossand-Berthommier, P.-C., and Vincent, P.-M. (2000), Merapi (Central Java, Indonesia): An outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events, J. Volcanol. and Geotherm. Res. 100, 139–163.

    Article  Google Scholar 

  • Commer, M. (2003), Three-dimensional inversion of transient electromagnetic data: A comparative study, Ph.D. Thesis, University of Cologne, Germany.

    Google Scholar 

  • Darwin, C. (1859), The origin of species, by means of natural selection or the preservation of favored races in the struggle for life, The Modern library, New York.

    Google Scholar 

  • Fernández, J. and Rundle, J. (1994), Gravity changes and deformation due to a magmatic intrusion in a two-layered crustal model, J. Geophy. Res. 99(B2), 2737–2746.

    Article  Google Scholar 

  • Friedel, S. and Jacobs, F. (2004), Blick in den Vulkan, Physik J. 3(11), 62–63.

    Google Scholar 

  • Gertisser, R. (2002), Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hoch-Risikovulkans, Ph.D. Thesis, Geowissenschaftliche Fakultät, Albert-Ludwigs-Universität Freiburg i.Br., Germany.

    Google Scholar 

  • Jentzsch, G., Weise, A., Rey, C., and Gerstenecker, C. (2004), Gravity changes and internal processes: Some results obtained from observations at three volcanoes, Pure Appl. Geophy. 161, 1415–1431.

    Article  Google Scholar 

  • Körner, A. (2000), Deformationsmodelle nach Auswertung von Tiltmeter-und GPS-Daten am Vulkan Merapi (Indonesien), Ph.D. Thesis, University of Potsdam, Germany.

    Google Scholar 

  • Langbein, J. (2003), Deformation of the Long Valley caldera, California: Inferences from Measurements from 1988 to 2001, J. Volcano. Geother. Res. 127, 247–267.

    Article  Google Scholar 

  • Läufer, G. (2003), Erzeugung hybrider digitaler Höhenmodelle aktiver Vulkane am Beispiel des Merapi, Indonesien, Ph.D. Thesis, Darmstadt University of Technology, Darmstadt, Germany.

    Google Scholar 

  • Mansinha, L., Smylie, D., and Orphal, D. (1971), The displacement fields of inclined faults, Bull. Seismol. Soc. Am. 61, 1433–1440.

    Google Scholar 

  • Ohrnberger, M., Wassermann, J., Budi, E., and Gössler, J. (2000), Continuous automatic monitoring of Mt. Merapi’s seismicity, 2. Merapi-Galeras Workshop 1999, Deutsche Geophysikalische Gesellschaft, 4/2000, 103–108.

    Google Scholar 

  • Ratdomopurbo, A. and Poupinet, G. (2000), An overview of the seismicity of Merapi volcano (Java, Indonesia) 1983–1994, J. Volcano. Geother. Res. 100, 193–214.

    Article  Google Scholar 

  • Rundle, J. (1980), Static elastic-gravitational deformation of a layered half-space by point couple sources, J. Geophys. Res. 85, 5355–5363.

    Article  Google Scholar 

  • Rundle, J. (1982), Deformation, gravity, and potential changes due to volcanic loading of the crust, J. Geophys. Res. 88(10), 647–652.

    Google Scholar 

  • Setiawan, A. (2002), Modeling of gravity changes on Merapi volcano observed between 1997–2000, Ph.D. Thesis, Darmstadt University of Technology, Darmstadt, Germany.

    Google Scholar 

  • Tiampo, K., Fernández, J., Jentzsch, G., Charco, M., Tiede, C., Gerstenecker, C., Camacho, A., and Rundle, J. (2004), Elastic-gravitational modeling of geodetic data in active volcanic areas, Recent Res. Devel. Geophys. 6, 37–58.

    Google Scholar 

  • Tiampo, K., Rundle, J., Fernández, J., and Langbein, J. (2000), Spherical and ellipsoidal volcanic sources at long Valley Caldera, California, Using a genetic algorithm inversion technique, J. Volcanol. Geotherm. Res. 102, 189–206.

    Article  Google Scholar 

  • Tiede, C. (2005), Integration of optimization algorithms with sensitivity analysis, with application to volcanic regions, Ph.D. Thesis, Darmstadt University of Technology, Darmstadt, Germany.

    Google Scholar 

  • Wassermann, J., Ohrnberger, M., Scherbaum, F., Gossler, J., and Zschau, J. (1998), Kontinuierliche seismologische Netz-und Arraymessungen am Dekadenvulkan Merapi (Java, Indonesien), Mitteilungen der Deutschen Geophysikalischen Gesellschaft, 1(3).

    Google Scholar 

  • Zimmer, M. and Erzinger, J. (2003), Continuous H 2 O, CO 2, 222 Rn and temperature measurements on Merapi volcano, Indonesia, J. Geophys. Res. 125, 25–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag, Basel

About this paper

Cite this paper

Tiede, C., Fernández, J., Gerstenecker, C., Tiampo, K.F. (2007). A Hybrid Model for the Summit Region of Merapi Volcano, Java, Indonesia, Derived from Gravity Changes and Deformation Measured between 2000 and 2002. In: Wolf, D., Fernández, J. (eds) Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8417-3_12

Download citation

Publish with us

Policies and ethics