Fiction turned fact: The case of antibodies


In chapter 2 I have discussed the discovery, by Oswald Avery and colleagues, of DNA as the molecular principle of pneumococcal transformation1 and the subsequent development of the fact, now robust knowledge, that DNA is the molecular principle of heredity in all of nature. One can discuss at length which of the various subsequent experiments established this fact once and for all, but most would agree that the solution of the three-dimensional structure of DNA by X-ray crystallography by Watson and Crick in 19532 had a pivotal role, by suggesting readily comprehensible mechanisms for replication, one of the two faculties the hereditary material must possess. Others might insist that the matter was not settled until Nirenberg and Matthaei, in 1961, added the mechanism by which DNA codes for proteins3, the second of the two essential faculties. In either case, considerable time had passed and effort had been spent since Avery’s initial notion in 1944.


Instructional Theory Robust Knowledge Antibody Function Serum Therapy Molecular Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 16 References

  1. 1.
    Avery OT, MacLeod C, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79: 137–158CrossRefPubMedGoogle Scholar
  2. 2.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171: 737–738PubMedCrossRefGoogle Scholar
  3. 3.
    Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47: 1588–1602PubMedCrossRefGoogle Scholar
  4. 4.
    Silverstein AM (1989) A history of immunology. Academic Press, Inc. San Diego, New YorkGoogle Scholar
  5. 5.
    Porter RR (1959) The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem J 73: 119–126PubMedGoogle Scholar
  6. 6.
    Poulik MD, Edelman GM (1961) Comparison of reduced alkylated derivatives of some myeloma globulins and Bence-Jones proteins. Nature 191: 1274–1276PubMedCrossRefGoogle Scholar
  7. 7.
    Edelman GM, Poulik MD (1961) Studies on structural units of the gammaglobulins. J Exp Med 113: 861–884PubMedCrossRefGoogle Scholar
  8. 8.
    Lindenmann J (1984) Origins of the terms ‘antibody’ and ‘antigen’. Scand J Immunol 19: 281PubMedCrossRefGoogle Scholar
  9. 9.
    Behring E (1890) Untersuchungen über das Zustandekommen der Diphterieimmunität bei Thieren. Dtsch Med Wochenschr 16: 1145Google Scholar
  10. 10.
    Behring E, Kitasato S (1890) Über das Zustandekommen der Diphterieimmunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschrift 16: 1113Google Scholar
  11. 11.
    Behring E, Wernicke E (1892) Über Immunisierung und Heilung von Versuchsthieren bei der Diphterie. Z Gesamte Hyg 12: 10Google Scholar
  12. 12.
    Behring E (1894) Das neue Diphteriemittel. BerlinGoogle Scholar
  13. 13.
    Zeiss H, Biehling R (1941) Behring, Gestalt und Werk. Bruno Schultz Verlag, Berlin-GrunewaldGoogle Scholar
  14. 14.
    Tizzoni G, Cattani G (1891) Über die Eigenschaften das Tetanus-Antitoxins. Zentralbl Bakteriol Mikrobiol Hyg (A) 9: 685Google Scholar
  15. 15.
    Tizzoni G, Cattani G (1891) Fernere Intersuchungen über Tetanus-Antitoxin. Zentralbl Bakteriol Mikrobiol Hyg (A) 10: 33Google Scholar
  16. 16.
    Gedoelst ML (1892) Traité de microbiologie appliquée a la médecine vétérinaire. J.Van In and Co., Lierre, BelgiumGoogle Scholar
  17. 17.
    Mazumdar PM (1974) The antigen-antibody reaction and the physics and chemistry of life. Bull Hist Med 48: 1PubMedGoogle Scholar
  18. 18.
    Verworn M (1894) Allgemeine Physiologie: Ein Grundriss der Lehre vom Leben. Fischer, JenaGoogle Scholar
  19. 19.
    Graham T (1861) Liquid diffusion applied to analysis. Phil Transl 151: 183CrossRefGoogle Scholar
  20. 20.
    Ehrlich P (1891) Experimentelle Untersuchungen über Immunität. II. Über Abrin. Dtsch Med Wochenschr 17: 1218CrossRefGoogle Scholar
  21. 21.
    Wells HG (1929) The chemical aspects of immunity. Chemical Catalog, New YorkGoogle Scholar
  22. 22.
    Bäumler E (1984) Paul Ehrlich, Scientist for Life. Holmes and Meier, New York and LondonGoogle Scholar
  23. 23.
    Marquardt M (1951) Paul Ehrlich. Springer Verlag, BerlinGoogle Scholar
  24. 24.
    Ehrlich P (1987) Die Wertbemessung des Diphterie-Heilserums, und deren theoretische Grundlagen. Klin Jahrb 6: 299Google Scholar
  25. 25.
    Ehrlich P, Morgenroth J (1901) Über Hämolysine: fünfte Mitteilung. Berl Klin Wochenschr 38: 251Google Scholar
  26. 26.
    Ehrlich P (1900) On immunity with special reference to cell life. Croonian Lecture. Proc Roy Soc London 66: 424Google Scholar
  27. 27.
    Lie JT (1980) Weigert, Carl (1845–1904), a pathfinder in medicine. Mayo Clinic Proceedings 55: 716–720PubMedGoogle Scholar
  28. 28.
    Bordet J (1900) Les sérums hémolytique, les anticoprs et les théories des sérums cytolytique. Ann de l’Inst Pasteur 14: 257Google Scholar
  29. 29.
    Danyz J (1902) Mélanges des toxines avec des antitoxines. Ann de l’Inst Pasteur 16: 331Google Scholar
  30. 30.
    Eisenberg P, Volk R (1902) Untersuchungen über Agglutination. Ztschr f Hyg 40: 155CrossRefGoogle Scholar
  31. 31.
    Schröder-Gudehus B (1978) Les scientifiques et la paix. Presses Univ Montrael, MontrealGoogle Scholar
  32. 32.
    Buchner H (1987) Die Bedeutung der aktiven löslichen Zellprodukte. Münch Med Wochenschr 44: 299–302Google Scholar
  33. 33.
    Van Dungern E (1903) Die Antikörper. Resultate früherer Untersuchungen und neue Versuche. Gustav Fischer Verlag, JenaGoogle Scholar
  34. 34.
    Ehrlich P, Morgenstern J (1901) Über Hämolysine, sechste Mitteilung. Berl Klin Wochenschr 38: 569Google Scholar
  35. 35.
    Cambrosio A, Jacobi D, Keating P (1993) Ehrlich’s ‘beautiful pictures’ and the controversial beginnings of immunological imagery. Isis 84: 662PubMedCrossRefGoogle Scholar
  36. 36.
    Le Dantec F (1916) Le bluff de la science allemande. In: Petit G, Leudet M (ed): Les Allemandes et la Science. Alcan, ParisGoogle Scholar
  37. 37.
    Dean HR (1917) Mechanism of serum reactions. Lancet 13: 45Google Scholar
  38. 38.
    Deutsch L (1899) Contribution a l’étude de l’origine des anticorps typhiques. Ann Inst Pasteur 13: 689Google Scholar
  39. 39.
    Buchner H (1893) Über Bacteriengifte und Gegengifte. Münch Med Wochenschr 40: 449Google Scholar
  40. 40.
    Emmrich R, Loew O (1991) Über biochemischen Antagonismus. Zentralbl Bakteriol Mikrobiol Hyg (A) 30: 552Google Scholar
  41. 41.
    Pick EP (1912) Biochemie der Antigene, mit besonderer Berücksichtigung der chemischen Grundlagen der Antigenspezifität. In: Kolle W, Wassermann A (eds): Handbuch der pathogenen Mikroorganismen. Fischer, Jena, 685Google Scholar
  42. 42.
    Abel JJ, Ford WW (1907) On the poison of Amanita phalloides. J Biol Chem 2: 273 Ford WW (1908) Pathology of Amanita phalloides intoxication. J Inf Dis 5: 116Google Scholar
  43. 43.
    Heidelberger M, Avery OT (1923) The soluble specific substance of Pneumococcus, 2nd paper. J Exp Med 40: 301CrossRefGoogle Scholar
  44. 44.
    Landsteiner K (1920) Specific serum reactions with simply composed substances of familiar constitution (inorganic acids). XIV. Announcement on antigens and serological specifity. Biochemische Zeitschr 104: 280 Landsteiner K (1922) On the formation of heterogenetic antigen by combination of hapten and protein. Proceedings of the Kononklije Akademie van Wetenschapen te Amsterdam 24 (1/7): 237Google Scholar
  45. 45.
    Ehrlich P, Morgenroth J: Berl Klin Wochenschr 1899: No. 1, No. 22; 1900: No. 21, No. 31; 1901: No. 10, No. 21Google Scholar
  46. 46.
    Landsteiner K (reprinted 2001; original 1901) Agglutination phenomena of normal human blood. Wien Klin Wochenschr 113: 768PubMedGoogle Scholar
  47. 47.
    Landsteiner K, Van der Scheer J (1924) On the specificity of agglutinins and precipitins. J Exp Med 40: 91CrossRefPubMedGoogle Scholar
  48. 48.
    Hiss PH Jr, Atkinson JP (1900) Serum globulin and diphteria antitoxin. — A comparative study of the amount of globulin in normal and antitoxic sera, and the relation of the globulins to the antitoxic bodies. J Exp Med 5: 47–66 Atkinson JP (1900) The fractional precipitation of the globulin and albumin of the normal horse’s serum and diphteria antitoxic serum, and the antitoxic strength of the precipitates. J Exp Med 5: 67–76CrossRefPubMedGoogle Scholar
  49. 49.
    Tiselius A (1937) Electrophoresis of purified antibody preparations. J Exp Med 65: 641–646CrossRefPubMedGoogle Scholar
  50. 50.
    Tiselius A, Kabat EA (1939) An electrophoretic study of immune sera and purified antibody preparations. J Exp Med 69: 119–131CrossRefPubMedGoogle Scholar
  51. 51.
    Cohn EJ, McMeekin TL, Oncley JL, Neweu JM, Hughes WL (1940) J Am Chem Soc 62: 3386; Cohn EJ, Luetscher JA Jr, Oncley JL,Armstrong SH Jr, Davis BD (1940) J Am Chem Soc 62: 3396CrossRefGoogle Scholar
  52. 52.
    Breinl F, Haurowitz F (1930) Chemische Untersuchungen des Präzipitates aus Hämoglobin und Anti-Hämoglobin-Serum und Bemerkungen über die Natur der Antikörper. Hoppe-Seyl Z Phys Chem 12: 45Google Scholar
  53. 53.
    Mudd S (1932) A hypothetical model of antibody formation. J Immunol 23: 423Google Scholar
  54. 54.
    Pauling L (1940) A theory of the structure and process of the formation of antibodies. J Amer Chem Soc 62: 2643CrossRefGoogle Scholar
  55. 55.
    Pauling L, Campbell DH (1942) The manufacture of antibodies in vitro. J Exp Med 76: 211CrossRefPubMedGoogle Scholar
  56. 56.
    Campbell DH (1948) The nature of antibodies. Ann Rev Microbiol 2: 269CrossRefGoogle Scholar
  57. 57.
    Porter RR (1950) A chemical study of rabbit antiovalbumin. Biochem J 46: 31Google Scholar
  58. 58.
    Campbell DH (1957) Blood 12: 589 Coons HH (1958) J Cellular Comp Physiol 52 Suppl 1: 55 Dubert JM (1959) Ann Inst Pasteur 97: 679 Fishman M (1959) Nature 183: 1200 Karush F, (1959) In: Shaffer J, LoGrippo G, Chase MW (eds): Mechanisms of Hypersensitivity. Little, Brown & Co., Boston, Mass. Koshland ME (1957) J Immunol 79: 162 Koshland ME, Englberger F (1957) J Immunol 79: 172 Najjar VA, Fisher J (1955) Science 122: 1272 Pappenheimer AM Jr, Scharff M, Uhr, JW (1959) In: Shaffer JH, LoGrippo GA, Chase MW (eds): Mechanisms of Hypersensitivity. Little, Brown & Co., Boston, Mass, 417 Schweet RS, Owen RD (1957) J Cellular Comp Physiol Suppl 1: 199 Speirs RS (1958) Nature 181: 681 Stavitsky AB (1957) Federation Proc 16: 652 Lederberg J (1959) Science 129: 1649 Boyden SV (1960) Nature 155: 724 Monod J (1959) In: Lawrence HS (ed): Cellular and Humoral Aspects of the Hypersensitive States. Hoeber-Harper, New York, 628PubMedGoogle Scholar
  59. 59.
    Burnet FM (1957) A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust J Sci 20: 67 Burnet FM (1959) The clonal selection theory of aquired immunity. Cambridge University Press, CambridgeGoogle Scholar
  60. 60.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag AG 2008

Personalised recommendations