Post-network immunology: Idiotypic network continues at the bedside


As reflected by the quotation rates given in Figure 9.4 (chapter 9), from 1990 onwards interest in the idiotypic network theory rapidly vanished, particularly from basic immunological research. Nevertheless, until today it enjoys a steady rate of about 20–40 quotations/year, reflecting continuing interest by clinicians and medical researchers working in companies.


Idiotypic Network High Dose IVIg Network Paradigm Quotation Rate Idiotypic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 13 References

  1. 1.
    Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci USA 73: 3628–3632PubMedCrossRefGoogle Scholar
  2. 2.
    Tonegawa S, Maxam AM, Tizard R, Bernard O, Gilbert W (1978) Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Natl Acad Sci USA 75: 1485–1489PubMedCrossRefGoogle Scholar
  3. 3.
    Schlissel MS (2003) Regulating antigen-receptor gene assembly. Nat Rev Immunol 3: 890–899PubMedCrossRefGoogle Scholar
  4. 4.
    Rusconi S, Kohler G (1985) Transmission and expression of a specific pair of rearranged immunoglobulin mu and kappa genes in a transgenic mouse line. Nature 314: 330–334 Ritchie KA, Brinster RL, Storb U (1984) Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in kappa transgenic mice. Nature 312: 517–520 Baltimore D, Grosschedl R, Weaver D, Costantini F, Imanishi-Kari T (1985) Studies of immunodifferentiation using transgenic mice. Cold Spring Harb Symp Quant Biol 50: 417–420PubMedCrossRefGoogle Scholar
  5. 5.
    Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) Beta 2-microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 344: 742–746PubMedCrossRefGoogle Scholar
  6. 6.
    Goodnow CC (1989) Cellular mechanisms of self-tolerance. Curr Opin Immunol 2: 226–236PubMedCrossRefGoogle Scholar
  7. 7.
    Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333: 742–746PubMedCrossRefGoogle Scholar
  8. 8.
    Schimpl A, Wecker E (1972) Replacement of T-cell function by a T-cell product. Nat New Biol 237: 15–17PubMedGoogle Scholar
  9. 9.
    Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature 302: 305–310PubMedCrossRefGoogle Scholar
  10. 10.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357PubMedGoogle Scholar
  11. 11.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512PubMedCrossRefGoogle Scholar
  12. 12.
    Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER (1985) Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317: 359–361PubMedCrossRefGoogle Scholar
  13. 13.
    Falk K, Rotzschke O, Rammensee HG (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348: 248–251PubMedCrossRefGoogle Scholar
  14. 14.
    Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, Jung G, Rammensee HG (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348: 252–254PubMedCrossRefGoogle Scholar
  15. 15.
    Kisielow P, Teh HS, Bluthmann H, von Boehmer H (1988) Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335: 730–733PubMedCrossRefGoogle Scholar
  16. 16.
    Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045PubMedGoogle Scholar
  17. 17.
    Janeway CA Jr (1993) How the immune system recognizes invaders. Sci Am 269: 72–79PubMedGoogle Scholar
  18. 18.
    Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–6PubMedCrossRefGoogle Scholar
  19. 19.
    Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351: 355–356PubMedCrossRefGoogle Scholar
  20. 20.
    Kopp EB, Medzhitov R (1999) The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11: 13–18PubMedCrossRefGoogle Scholar
  21. 21.
    Joao C (2007) Immunoglobulin is a highly diverse self-molecule that improves cellular diversity and function during immune reconstitution. Med Hypotheses 68: 158–161PubMedCrossRefGoogle Scholar
  22. 22.
    Martinez-A C, Pereira P, de la Hera A, Bandeira A, Marquez C, Coutinho A (1986) The basis for major histocompatibility complex (MHC) and immunoglobulin gene control of helper T cell idiotopes. Eur J Immunol 16: 417–422PubMedCrossRefGoogle Scholar
  23. 23.
    Eichmann K, Rajewsky K (1975) Induction of T and B cell immunity by antiidiotypic antibody. Eur J Immunol 5: 661–666PubMedCrossRefGoogle Scholar
  24. 24.
    Caton M, Diamond B (2003) Using peptide mimetopes to elucidate anti-polysaccharide and anti-nucleic acid humoral responses. Cell Mol Biol (Noisy-legrand) 49: 255–262Google Scholar
  25. 25.
    Harris SL, Park MK, Nahm MH, Diamond B (2000) Peptide mimic of phosphorylcholine, a dominant epitope found on Streptococcus pneumoniae. Infect Immun 68: 5778–5784PubMedCrossRefGoogle Scholar
  26. 26.
    Pride MW, Shi H, Anchin JM, Linthicum DS, LoVerde PT, Thakur A, Thanavala Y (1992) Molecular mimicry of hepatitis B surface antigen by an anti-idiotype-derived synthetic peptide. Proc Natl Acad Sci USA 89: 11900–11904PubMedCrossRefGoogle Scholar
  27. 27.
    Sutor GC, Dreikhausen U, Vahning U, Jurkiewicz E, Hunsmann G, Lundin K, Schedel I (1992) Neutralization of HIV-1 by anti-idiotypes to monoclonal anti-CD4. Potential for idiotype immunization against HIV. J Immunol 149: 1452–1461PubMedGoogle Scholar
  28. 28.
    Dalgleish AG (1991) An anti-idiotype vaccine for AIDS based on the HIV receptor. Ann Ist Super Sanita 27: 27–31PubMedGoogle Scholar
  29. 29.
    Melnick JL (1989) Virus vaccines: principles and prospects. Bull World Health Organ 67: 105–112 Hiernaux JR (1988) Idiotypic vaccines and infectious diseases. Infect Immun 56: 1407–1413 Eichmann K, Emmrich F, Kaufmann SH (1987) Idiotypic vaccinations: consideration towards a practical application. Crit Rev Immunol 7: 193–227 Finberg RW, Ertl H (1987) The use of antiidiotypic antibodies as vaccines against infectious agents. Crit Rev Immunol 7: 269–284PubMedGoogle Scholar
  30. 30.
    Lynch RG, Graff RJ, Sirisinha S, Simms ES, Eisen HN (1972) Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA 69: 1540–1544PubMedCrossRefGoogle Scholar
  31. 31.
    Miller RA, Maloney DG, Warnke R, Levy R (1982) Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 306: 517–522PubMedGoogle Scholar
  32. 32.
    Inogès S, Rodríguez-Calvillo M, Zabalegui N, López-Díaz de Cerio A, Villanueva H, Soria E et al (2006) Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst 98: 1292–1301PubMedGoogle Scholar
  33. 33.
    de Cerio AL, Zabalegui N, Rodriguez-Calvillo M, Inoges S, Bendandi M (2007) Anti-idiotype antibodies in cancer treatment. Oncogene 26: 3594–3602PubMedCrossRefGoogle Scholar
  34. 34.
    Longo DL (2006) Idiotype vaccination in follicular lymphoma: knocking on the doorway to cure. J Natl Cancer Inst 98: 1263–1265PubMedCrossRefGoogle Scholar
  35. 35.
    Hurvitz SA, Timmerman JM (2005) Current status of therapeutic vaccines for non-Hodgkin’s lymphoma. Curr Opin Oncol 17: 432–440 Timmerman JM (2004) Therapeutic idiotype vaccines for non-Hodgkin’s lymphoma. Adv Pharmacol 51: 271–293 Coscia M, Kwak LW (2004) Therapeutic idiotype vaccines in B lymphoproliferative diseases. Expert Opin Biol Ther 4: 959–963 Lee ST, Jiang YF, Park KU, Woo AF, Neelapu SS (2007) BiovaxID: a personalized therapeutic cancer vaccine for non-Hodgkin’s lymphoma. Expert Opin Biol Ther 7: 113–122 Stevenson FK, Zhu D, Rice J (2001) New strategies for vaccination and imunomodulation in NHL. Ann Hematol 80 Suppl 3: B132–B134PubMedCrossRefGoogle Scholar
  36. 36.
    Bogen B, Ruffini PA, Corthay A, Fredriksen AB, Froyland M, Lundin K, Rosjo E, Thompson K, Massaia M (2006) Idiotype-specific immunotherapy in multiple myeloma: suggestions for future directions of research. Haematologica 91: 941–948 Houet L, Veelken H (2006) Active immunotherapy of multiple myeloma. Eur J Cancer 42: 1653–1660 Chong G, Bhatnagar A, Cunningham D, Cosgriff TM, Harper PG, Steward W, Bridgewater J, Moore M, Cassidy J, Coleman R et al. (2006) Phase III trial of 5-fluorouracil and leucovorin plus either 3H1 anti-idiotype monoclonal antibody or placebo in patients with advanced colorectal cancer. Ann Oncol 17: 437–442 Manjili MH (2007) Come forth 1E10 anti-idiotype vaccine: delivering the promise to immunotherapy of small cell lung cancer. Cancer Biol Ther 6: 151–152 Rhee F (2007) Idiotype vaccination strategies in myeloma: how to overcome a dysfunctional immune system. Clin Cancer Res 13: 1353–1355PubMedGoogle Scholar
  37. 37.
    Shoenfeld Y, Amital H, Ferrone S, Kennedy RC (1994) Anti-idiotypes and their application under autoimmune, neoplastic, and infectious conditions. Int Arch Allergy Immunol 105: 211–223 Shoenfeld Y (1994) Idiotypic induction of autoimmunity: a new aspect of the idiotypic network. FASEB J 8: 1296–1301 Schwartz RS (1992) Therapeutic clonotypic vaccines. N Engl J Med 327: 1236–1237PubMedCrossRefGoogle Scholar
  38. 38.
    Lohse AW, Cohen IR (1991) Mechanisms of resistance to autoimmune disease induced by T-cell vaccination. Autoimmunity 9: 119–121PubMedCrossRefGoogle Scholar
  39. 39.
    Weathington NM, Blalock JE (2003) Rational design of peptide vaccines for autoimmune disease: harnessing molecular recognition to fix a broken network. Expert Rev Vaccines 2: 61–73PubMedCrossRefGoogle Scholar
  40. 40.
    Payne AS, Siegel DL, Stanley JR (2007) Targeting pemphigus autoantibodies through their heavy-chain variable region genes. J Invest Dermatol 127: 1681–1691PubMedGoogle Scholar
  41. 41.
    Taams LS, Akbar AN, Wauben MHW (eds) (2005) Regulatory T cells in Inflammation. Birkhäuser, BaselGoogle Scholar
  42. 42.
    Imbach P, Barandun S, d’Apuzzo V, Baumgartner C, Hirt A, Morell A, Rossi E, Schoni M, Vest M, Wagner HP (1981) High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1: 1228–1231PubMedCrossRefGoogle Scholar
  43. 43.
    Fehr J, Hofmann V, Kappeler U (1982) Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med 306: 1254–1258PubMedGoogle Scholar
  44. Bussel JB, Kimberly RP, Inman RD, Schulman I, Cunningham-Rundles C, Cheung N, Smithwick EM, O’Malley J, Barandun S, Hilgartner MW (1983) Intravenous gammaglobulin treatment of chronic idiopathic thrombocytopenic purpura. Blood 62: 480–486PubMedGoogle Scholar
  45. 44.
    Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, Lacroix-Desmazes S, Bayry J, Kaveri SV (2007) Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 27: 233–245 Bayary J, Dasgupta S, Misra N, Ephrem A, Van Huyen JP, Delignat S, Hassan G, Caligiuri G, Nicoletti A, Lacroix-Desmazes S, Kazatchkine MD, Kaveri S (2006) Intravenous immunoglobulin in autoimmune disorders: an insight into the immunoregulatory mechanisms. Int Immunopharmacol 6: 528–534PubMedCrossRefGoogle Scholar
  46. 45.
    Dietrich G, Kaveri SV, Kazatchkine MD (1992) A V region-connected autoreactive subfraction of normal human serum immunoglobulin G. Eur J Immunol 22: 1701–1706 Dietrich G, Algiman M, Sultan Y, Nydegger UE, Kazatchkine MD (1992) Origin of anti-idiotypic activity against anti-factor VIII autoantibodies in pools of normal human immunoglobulin G (IVIg). Blood 79: 2946–2951PubMedCrossRefGoogle Scholar
  47. 46.
    Dietrich G, Varela FJ, Hurez V, Bouanani M, Kazatchkine MD (1993) Selection of the expressed B cell repertoire by infusion of normal immunoglobulin G in a patient with autoimmune thyroiditis. Eur J Immunol 23: 2945–2950PubMedCrossRefGoogle Scholar
  48. 47.
    Nimmerjahn F, Ravetch JV (2007) The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med 204: 11–15PubMedCrossRefGoogle Scholar

Further reading

  1. Kohler H, Bhattacharya-Chatterjee M, Muller S, Foon KA (1995) Idiotype manipulation in disease management. Adv Exp Med Biol 383: 117–122PubMedGoogle Scholar
  2. Su S, Ward MM, Apicella MA, Ward RE (1992) A nontoxic, idiotope vaccine against gram-negative bacterial infections. J Immunol 148: 234–238PubMedGoogle Scholar
  3. Bhattacharya-Chatterjee M, Foon KA (1998) Anti-idiotype antibody vaccine therapies of cancer. Cancer Treat Res 94: 51–68PubMedGoogle Scholar
  4. Bendandi M (2000) Anti-idiotype vaccines for human follicular lymphoma. Leukemia 14: 1333–1339PubMedCrossRefGoogle Scholar
  5. Kofler DM, Mayr C, Wendtner CM (2006) Current status of immunotherapy in B cell malignancies. Curr Drug Targets 7: 1371–1374PubMedCrossRefGoogle Scholar
  6. Lopez-Requena A, Mateo De Acosta C, Vazquez AM, Perez R (2007) Immunogenicity of autologous immunoglobulins: principles and practices. Mol Immunol 44: 3076–3082PubMedCrossRefGoogle Scholar
  7. Lacroix-Desmazes S, Mouthon L, Spalter SH, Kaveri S, Kazatchkine MD (1996) Immunoglobulins and the regulation of autoimmunity through the immune network. Clin Exp Rheumatol 14Suppl 15: 9–15Google Scholar

Copyright information

© Birkhäuser Verlag AG 2008

Personalised recommendations