Skip to main content

Suppression turned idiotypic

  • Chapter
Book cover The Network Collective
  • 476 Accesses

Abstract

Suppressive effects of lymphocytes in immune responses had first been observed in the early 1970s (see chapter 7). The phenomenon of cellular immune suppression thus preceded the network theory and research on suppressor cells was carried out initially independent of network concepts, as a paradigm in its own right. In these initial experiments suppression was mostly associated with T cells from various lymphoid organs that, admixed to antigen-stimulated lymphocyte populations, diminished their reactivity as determined by T cell proliferation assays13. Thus, in these initial experiments both the suppressive and the antigen-reactive lymphocytes had been T cells, so that suppression was perceived as an affair among T cells only. However, the notable exception among these early observations was a report on allotype-specific suppression of immunoglobulin production by suppressor T cells, suggesting that B cells, even without antigen-stimulation, can be a target of T cell suppression as well4. The idea that in order to produce antibodies a B lymphocyte first has to escape from the suppressive effect of suppressor T cells fascinated Jerne, who speculated that: “T cells recognizing the idiotypes of B cell receptors may be assumed likewise to maintain B cell suppression. Conversely, we could conclude that, normally, B cells remain functional because of the absence of sufficient numbers of specific suppressor T cells...”5 Jerne’s speculation provided the incentive to merge the two paradigms, suppressor T cells and idiotypic network theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 11 References

  1. Droege W (1971) Amplifying and suppressive effect of thymus cells. Nature 234: 549–551

    Article  PubMed  CAS  Google Scholar 

  2. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21: 903–914

    PubMed  CAS  Google Scholar 

  3. Gershon RK, Cohen P, Hencin R, Liebhaber SA (1972) Suppressor T cells. J Immunol 108: 586–590

    PubMed  CAS  Google Scholar 

  4. Herzenberg LA, Chan EL, Ravitch MM, Riblet RJ, Herzenberg LA (1973) Active suppression of immunoglobulin allotype synthesis. 3. Identification of T cells as responsible for suppression by cells from spleen, thymus, lymph node, and bone marrow. J Exp Med 137: 1311–1324

    Article  PubMed  CAS  Google Scholar 

  5. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol (Inst Pasteur) 125C: 373

    CAS  Google Scholar 

  6. Raff MC (1970) Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence. Immunology 19: 637–650

    PubMed  CAS  Google Scholar 

  7. Cantor H, Boyse EA (1975) Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med 141: 1390–1399

    Article  PubMed  CAS  Google Scholar 

  8. Cantor H, Boyse EA (1975) Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med 141: 1376–1389

    Article  PubMed  CAS  Google Scholar 

  9. Ledbetter JA, Herzenberg LA (1979) Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 47: 63–90

    Article  PubMed  CAS  Google Scholar 

  10. Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA (1980) T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med 152: 280–295

    Article  PubMed  CAS  Google Scholar 

  11. Huber B, Devinsky O, Gershon RK, Cantor H (1976) Cell-mediated immunity: delayed-type hypersensitivity and cytotoxic responses are mediated by different T-cell subclasses. J Exp Med 143: 1534–1539

    Article  PubMed  CAS  Google Scholar 

  12. Cantor H, Simpson E (1975) Regulation of the immune response by subclasses of T lymphocytes. I. Interactions between pre-killer T cells and regulatory T cells obtained from peripheral lymphoid tissues of mice. Eur J Immunol 5: 330–336

    Article  PubMed  CAS  Google Scholar 

  13. Cantor H, Boyse EA (1975) Development and function of subclasses of T cells. J Reticuloendothel Soc 17: 115–118

    PubMed  CAS  Google Scholar 

  14. Jandinski J, Cantor H, Tadakuma T, Peavy DL, Pierce CW (1976) Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T-cell subclasses. J Exp Med 143: 1382–1390

    Article  PubMed  CAS  Google Scholar 

  15. Cantor H, Gershon RK (1979) Immunological circuits: cellular composition. Fed Proc 38: 2058–2064

    PubMed  CAS  Google Scholar 

  16. Green DR, Flood PM, Gershon RK (1983) Immunoregulatory T-cell pathways. Annu Rev Immunol 1: 439–463

    Article  PubMed  CAS  Google Scholar 

  17. Tada T, Taniguchi M, David CS (1976) Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive Tcell factor in the H-2 histocompatibility complex. J Exp Med 144: 713–725

    Article  PubMed  CAS  Google Scholar 

  18. Murphy DB, Herzenberg LA, Okumura K, Herzenberg LA, McDevitt HO (1976) A new I subregion (I-J) marked by a locus (Ia-4) controlling surface determinants on suppressor T lymphocytes. J Exp Med 144: 699–712

    Article  PubMed  CAS  Google Scholar 

  19. Tada T, Okumura K (1979) The role of antigen-specific T cell factors in the immune response. Adv Immunol 28: 1–87

    Article  PubMed  CAS  Google Scholar 

  20. Munro AJ, Taussig MJ, Campbell R, Williams H, Lawson Y (1974) Antigen-specific T-cell factor in cell cooperation: physical properties and mapping in the left-hand (K) half of H-2. J Exp Med 140: 1579–1587

    Article  PubMed  CAS  Google Scholar 

  21. Taussig MJ (1974) T cell factor which can replace T cells in vivo. Nature 248: 234–236

    Article  PubMed  CAS  Google Scholar 

  22. Tada T, Okumura K, Taniguchi M (1973) Regulation of homocytotropic antibody formation in the rat. 8. An antigen-specific T cell factor that regulates anti-hapten homocytotropic antibody response. J Immunol 111: 952–961;Takemori T, Tada T (1975) Properties of antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. I. In vivo activity and immunochemical characterization. J Exp Med 142: 1241–1253; Treves AJ, Cohen IR, Feldman M (1976) Suppressor factor secreted by T-lymphocytes from tumor-bearing mice. J Natl Cancer Inst 57: 409–414; Thomas DW, Roberts WK, Talmage DW (1975) Regulation of the immune response: production of a soluble suppressor by immune spleen cells in vitro. J Immunol 114: 1616–1622; Rich SS, Rich RR (1976) Regulatory mechanisms in cell-mediated immune responses. IV. Expression of a receptor for mixed lymphocyte reaction suppressor factor on activated T lymphocytes. J Exp Med 144: 121 4–1226; Harwell L, Marrack P, Kappler JW (1977) Suppressor T-cell inactivation of a helper T-cell factor. Nature 265: 57–59; Theze J, Kapp JA, Benacerraf B (1977) Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) III Immunochemical properties of the GATspecific suppressive factor. J Exp Med 145: 839–856; Germain RN,Theze J, Waltenbaugh C, Dorf ME, Benacerraf B (1978) Antigenspecific T cell-mediated suppression. II. In vitro induction by I-J-coded L-glutamic acid50-L-tyrosine50 (GT)-specific T cell suppressor factor (GT-T8F) of suppressor T cells (T82) bearing distinct I-J determinants. J Immunol 121: 602–607; Kontiainen S, Simpson E, Bohrer E, Beverley PC, Herzenberg LA, Fitzpatrick WC, Vogt P,Torano A, McKenzie IF, Feldmann M (1978) T-cell lines producing antigen-specific suppressor factor. Nature 274: 477–480; Perry LL, Benacerraf B, Greene MI (1978) Regulation of the immune response to tumor antigen. IV. Tumor antigen-specific suppressor factor(s) bear I-J determinants and induce suppressor T cells in vivo. J Immunol 121: 2144–2147

    PubMed  CAS  Google Scholar 

  23. Germain RN, Benacerraf B (1980) Helper and suppressor T cell factors. Springer Semin Immunopathol 3: 93–127

    Article  PubMed  CAS  Google Scholar 

  24. Eichmann K, Rajewsky K (1975) Induction of T and B cell immunity by antiidiotypic antibody. Eur J Immunol 5: 661–666

    Article  PubMed  CAS  Google Scholar 

  25. Sy MS, Bach BA, Dohi Y, Nisonoff A, Benacerraf B, Greene MI (1979) Antigen-and receptor-driven regulatory mechanisms. I. Induction of suppressor T cells with anti-idiotypic antibodies. J Exp Med 150: 1216–1228

    Article  PubMed  CAS  Google Scholar 

  26. Sy MS, Bach BA, Brown A, Nisonoff A, Benacerraf B, Greene MI (1979) Antigen-and receptor-driven regulatory mechanisms. II. Induction of suppressor T cells with idiotype-coupled syngeneic spleen cells. J Exp Med 150: 1229-1240

    Google Scholar 

  27. Eichmann K (1975) Idiotype suppression. II. Amplification of a suppressor T cell with anti-idiotypic activity. Eur J Immunol 5: 511–517

    Article  PubMed  CAS  Google Scholar 

  28. Woodland R, Cantor H (1978) Idiotype-specific T helper cells are required to induce idiotype-positive B memory cells to secrete antibody. Eur J Immunol 8: 600–606

    Article  PubMed  CAS  Google Scholar 

  29. Hetzelberger D, Eichmann K (1978) Recognition of idiotypes in lymphocyte interactions. I. Idiotypic selectivity in the cooperation between T and B lymphocytes. Eur J Immunol 8: 846–852

    Article  PubMed  CAS  Google Scholar 

  30. Eichmann K, Falk I, Rajewsky K (1978) Recognition of idiotypes in lymphocyte interactions. II. Antigen-independent cooperation between T and B lymphocytes that possess similar and complementary idiotypes. Eur J Immunol 8: 853–857

    Article  PubMed  CAS  Google Scholar 

  31. Dietz MH, Sy MS, Benacerraf B, Nisonoff A, Greene MI, Germain RN (1981) Antigen-and receptor-driven regulatory mechanisms. VII. H-2-restricted antiidiotypic suppressor factor from efferent suppressor T cells. J Exp Med 153: 450–463

    Article  PubMed  CAS  Google Scholar 

  32. Sy MS, Nisonoff A, Germain RN, Benacerraf B, Greene MI (1981) Antigenand receptor-driven regulatory mechanisms. VIII. Suppression of idiotype-negative, p-azobenzenearsonate-specific T cells results from the interaction of an anti-idiotypic second-order T suppressor cell with a cross-reactive-idiotypepositive, p-azobenzenearsonate-primed T cell target. J Exp Med 153: 1415–1425

    Article  PubMed  CAS  Google Scholar 

  33. Takaoki M, Sy MS, Whitaker B, Nepom J, Finberg R, Germain RN, Nisonoff A, Benacerraf B, Greene MI (1982) Biologic activity of an idiotype-bearing suppressor T cell factor produced by a long-term T cell hybridoma. J Immunol 128: 49–53

    PubMed  CAS  Google Scholar 

  34. Greene MI, Pierres A, Dorf ME, Benacerraf B (1977) The I-J subregion codes for determinats on suppressor factor(s) which limit the contact sensitivity response to picryl chloride. J Exp Med 146: 293–296 Greene MI, Benacerraf B (1980) Studies on hapten specific T cell immunity and suppression. Immunol Rev 50: 163–186 Minami M, Okuda K, Furusawa S, Benacerraf B, Dorf ME (1981) Analysis of T cell hybridomas. I. Characterization of H-2 and Igh-restricted monoclonal suppressor factors. J Exp Med 154: 1390–1402 Takaoki M, Sy MS, Tominaga A, Lowy A, Tsurufuji M, Finberg R, Benacerraf B, Greene MI (1982) I-J-restricted interactions in the generation of azobenzenearsonate-specific suppressor T cells. J Exp Med 156: 1325–1334 Okuda K, Minami M, Ju ST, Dorf ME (1981) Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. Proc Natl Acad Sci USA 78: 4557–4561 Sherr DH, Dorf ME (1984) Characterization of anti-idiotypic suppressor T cells (Tsid) induced after antigen priming. J Immunol 133: 1142–1150

    Article  PubMed  CAS  Google Scholar 

  35. Flood PM, Lowy A, Tominaga A, Chue B, Greene MI, Gershon RK (1983) Igh variable region-restricted T cell interactions. Genetic restriction of an antigenspecific suppressor inducer factor is imparted by an I-J+ antigen-nonspecific molecule. J Exp Med 158: 1938–1947

    Article  PubMed  CAS  Google Scholar 

  36. Eardley DD, Shen FW, Cantor H, Gershon RK (1979) Genetic control of immunoregulatory circuits. Genes linked to the Ig locus govern communication between regulatory T-cell sets. J Exp Med 150: 44–50

    Article  PubMed  CAS  Google Scholar 

  37. Flood PM, DeLeo AB, Old LJ, Gershon RK (1983) Relation of cell surface antigens on methylcholanthrene-induced fibrosarcomas to immunoglobulin heavy chain complex variable region-linked T cell interaction molecules. Proc Natl Acad Sci USA 80: 1683–1687

    Article  PubMed  CAS  Google Scholar 

  38. Steinmetz M, Minard K, Horvath S, McNicholas J, Srelinger J, Wake C, Long E, Mach B, Hood L (1982) A molecular map of the immune response region from the major histocompatibility complex of the mouse. Nature 300: 35–42

    Article  PubMed  CAS  Google Scholar 

  39. Kronenberg M, Steinmetz M, Kobori J, Kraig E, Kapp JA, Pierce CW, Sorensen CM, Suzuki G, Tada T, Hood L (1983) RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc Natl Acad Sci USA 80: 5704–5708

    Article  PubMed  CAS  Google Scholar 

  40. Waltenbaugh C (1981) Regulation of immune responses by I-J gene products. I. Production and characterization of anti-I-J monoclonal antibodies. J Exp Med 154: 1570–1583

    Article  PubMed  CAS  Google Scholar 

  41. Kanno M, Kobayashi S, Tokuhisa T, Takei I, Shinohara N, Taniguchi M (1981) Monoclonal antibodies that recognize the product controlled by a gene in the I-J subregion of the mouse H-2 complex. J Exp Med 154: 1290–1304

    Article  PubMed  CAS  Google Scholar 

  42. Klein J, Ikezawa Z, Nagy ZA (1985) From LDH-B to J: an involuntary trip. Immunol Rev 83: 61–77 See also other articles in this issue: Dorf ME, Benacerraf B (1985) I-J as a restriction element in the suppressor T cell system. Immunol Rev 83: 23–40 Murphy DB, Horowitz MC, Homer RJ, Flood PM (1985) Genetic, serological and functional analysis of I-J molecules. Immunol Rev 83: 79–103

    Article  PubMed  CAS  Google Scholar 

  43. Moller G (1988) Do suppressor T cells exist? Scand J Immunol 27: 247–250

    Article  PubMed  CAS  Google Scholar 

  44. Kronenberg M, Goverman J, Haars R, Malissen M, Kraig E, Phillips L, Delovitch T, Suciu-Foca N, Hood L (1985) Rearrangement and transcription of the beta-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature 313: 647–653

    Article  PubMed  CAS  Google Scholar 

  45. Eichmann K (1988) Suppression needs a new hypothesis, an answer to Göran Möller. Scand J Immunol 28: 273

    Article  PubMed  CAS  Google Scholar 

  46. Bloom BR, Salgame P, Diamond B (1992) Revisiting and revising suppressor T cells. Immunol Today 13: 13113–13116

    Article  Google Scholar 

  47. Shevach EM (2000) Suppressor T cells: Rebirth, function and homeostasis. Curr Biol 10: R572–R575

    Article  PubMed  CAS  Google Scholar 

  48. Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166: 753–755

    Article  PubMed  CAS  Google Scholar 

  49. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101: 455–458

    Article  PubMed  CAS  Google Scholar 

  50. Taams LS, Akbar AN, Wauben MHM (eds) (2005) Regulatory T cells in inflammation. Birkhäuser Verlag, Basel, Boston, Berlin

    Google Scholar 

Further Reading

  • Keating P, Cambrosio A (1997) Helpers and suppressors: on fictional characters in immunology. J Hist Biol 30: 381–396

    Article  PubMed  CAS  Google Scholar 

  • Sercarz E, Oki A, Gammon G (1989) Central versus peripheral tolerance: clonal inactivation versus suppressor T cells, the second half of the ‘Thirty Years War’. Immunol Suppl 2: 9–14

    Google Scholar 

  • Ward K, Cantor H, Nisonoff A (1978) Analysis of the cellular basis of idiotype-specific suppression. J Immunol 120: 2016–2019

    PubMed  CAS  Google Scholar 

  • Weinberger JZ, Germain RN, Benacerraf B, Dorf ME (1980) Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. V. Role of idiotypes in the suppressor pathway. J Exp Med 152: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Benacerraf B, Germain RN (1981) A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol 13: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Dorf ME, Benacerraf B (1984) Suppressor cells and immunoregulation. Annu Rev Immunol 127–157

    Google Scholar 

  • Kontiainen S, Feldmann M (1979) Structural characteristics of antigen-specific suppressor factors: definition of ‘constant’ region and ‘variable’ region determinants. Thymus 1: 59–79

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2008). Suppression turned idiotypic. In: The Network Collective. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8373-2_11

Download citation

Publish with us

Policies and ethics