Skip to main content

The immune response to influenza A viruses

  • Chapter
Influenza Vaccines for the Future

Abstract

The influenza A viruses are dangerous pathogens with the potential to provoke devastating disease. The challenge for the medical research community is to design preventive measures and therapeutic interventions that will limit the severe consequences of pandemic influenza A virus infections. Vaccines have long been available, but there is considerable scope for improvement as they target only the prevailing influenza A virus strains, do not give broad immunity and work poorly in the elderly, the target group that is most at risk of fatal disease. Improved vaccines will only emerge if the development strategy is based on a firm understanding of the host immune response to the virus. Here, we summarize the research to date that details immune mechanisms participating in the control and elimination of influenza A viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis DB (2006) Avian flu to human influenza. Annu Rev Med 57: 139–154

    PubMed  CAS  Google Scholar 

  2. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216

    PubMed  CAS  Google Scholar 

  3. Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R, Chignard M, Si-Tahar M (2006) Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2: e53

    PubMed  Google Scholar 

  4. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005) Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280: 5571–5580

    PubMed  CAS  Google Scholar 

  5. Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MB (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322: 231–238

    PubMed  CAS  Google Scholar 

  6. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314: 997–1001

    PubMed  CAS  Google Scholar 

  7. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M et al (2006) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997

    PubMed  Google Scholar 

  8. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23: 19–28

    PubMed  CAS  Google Scholar 

  9. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531

    PubMed  CAS  Google Scholar 

  10. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101: 5598–5603

    PubMed  CAS  Google Scholar 

  11. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105

    PubMed  CAS  Google Scholar 

  12. Leung KN, Ada GL (1981) Induction of natural killer cells during murine influenza virus infection. Immunobiology 160: 352–366

    PubMed  CAS  Google Scholar 

  13. Stein-Streilein J, Bennett M, Mann D, Kumar V (1983) Natural killer cells in mouse lung: Surface phenotype, target preference, and response to local influenza virus infection. J Immunol 131: 2699–2704

    PubMed  CAS  Google Scholar 

  14. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu Rev Immunol 17: 189–220

    PubMed  CAS  Google Scholar 

  15. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409: 1055–1060

    PubMed  CAS  Google Scholar 

  16. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31: 2680–2689

    PubMed  CAS  Google Scholar 

  17. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7: 517–523

    PubMed  CAS  Google Scholar 

  18. Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, Schultz-Cherry S, Solorzano A, Van Rooijen N, Katz JM, Basler CF (2005) Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79: 14933–14944

    PubMed  CAS  Google Scholar 

  19. Fujisawa H (2001) Inhibitory role of neutrophils on influenza virus multiplication in the lungs of mice. Microbiol Immunol 45: 679–688

    PubMed  CAS  Google Scholar 

  20. Ratcliffe DR, Nolin SL, Cramer EB (1988) Neutrophil interaction with influenzainfected epithelial cells. Blood 72: 142–149

    PubMed  CAS  Google Scholar 

  21. Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141: 471–501

    PubMed  CAS  Google Scholar 

  22. Fujimoto I, Pan J, Takizawa T, Nakanishi Y (2000) Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol 74: 3399–3403

    PubMed  CAS  Google Scholar 

  23. Hofmann P, Sprenger H, Kaufmann A, Bender A, Hasse C, Nain M, Gemsa D (1997) Susceptibility of mononuclear phagocytes to influenza A virus infection and possible role in the antiviral response. J Leukoc Biol 61: 408–414

    PubMed  CAS  Google Scholar 

  24. Gong JH, Sprenger H, Hinder F, Bender A, Schmidt A, Horch S, Nain M, Gemsa D (1991) Influenza A virus infection of macrophages. Enhanced tumor necrosis factor-alpha (TNF-alpha) gene expression and lipopolysaccharidetriggered TNF-alpha release. J Immunol 147: 3507–3513

    PubMed  CAS  Google Scholar 

  25. Kaufmann A, Salentin R, Meyer RG, Bussfeld D, Pauligk C, Fesq H, Hofmann P, Nain M, Gemsa D, Sprenger H (2001) Defense against influenza A virus infection: Essential role of the chemokine system. Immunobiology 204: 603–613

    PubMed  CAS  Google Scholar 

  26. Sprenger H, Meyer RG, Kaufmann A, Bussfeld D, Rischkowsky E, Gemsa D (1996) Selective induction of monocyte and not neutrophil-attracting chemokines after influenza A virus infection. J Exp Med 184: 1191–1196

    PubMed  CAS  Google Scholar 

  27. Bussfeld D, Kaufmann A, Meyer RG, Gemsa D, Sprenger H (1998) Differential mononuclear leukocyte attracting chemokine production after stimulation with active and inactivated influenza A virus. Cell Immunol 186: 1–7

    PubMed  CAS  Google Scholar 

  28. Wijburg OL, DiNatale S, Vadolas J, van Rooijen N, Strugnell RA (1997) Alveolar macrophages regulate the induction of primary cytotoxic T-lymphocyte responses during influenza virus infection. J Virol 71: 9450–9457

    PubMed  CAS  Google Scholar 

  29. Fesq H, Bacher M, Nain M, Gemsa D (1994) Programmed cell death (apoptosis) in human monocytes infected by influenza A virus. Immunobiology 190: 175–182

    PubMed  CAS  Google Scholar 

  30. Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23: 307–336

    PubMed  CAS  Google Scholar 

  31. Wyde PR, Wilson MR, Cate TR (1982) Interferon production by leukocytes infiltrating the lungs of mice during primary influenza virus infection. Infect Immun 38: 1249–1255

    PubMed  CAS  Google Scholar 

  32. Durbin JE, Fernandez-Sesma A, Lee CK, Rao TD, Frey AB, Moran TM, Vukmanovic S, Garcia-Sastre A, Levy D (2000). Type I IFN modulates innate and specific antiviral immunity. J Immunol 164: 4220–4228

    PubMed  CAS  Google Scholar 

  33. Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, Durbin JE (1998) The role of interferon in influenza virus tissue tropism. J Virol 72: 8550–8558

    PubMed  CAS  Google Scholar 

  34. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5: 919–923

    PubMed  CAS  Google Scholar 

  35. Nakano H, Yanagita M, Gunn MD (2001) CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194: 1171–1178

    PubMed  CAS  Google Scholar 

  36. Bruno L, Seidl T, Lanzavecchia A (2001) Mouse pre-immunocytes as non-proliferating multipotent precursors of macrophages, interferon-producing cells, CD8alpha(+) and CD8alpha(-) dendritic cells. Eur J Immunol 31: 3403–3412

    PubMed  CAS  Google Scholar 

  37. O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, Wu L, Lahoud MH, Henri S, Scott B et al (2002) Mouse plasmacytoid cells: Longlived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196: 1307–1319

    PubMed  CAS  Google Scholar 

  38. Seo SH, Webster RG (2002) Tumor necrosis factor alpha exerts powerful antiinfluenza virus effects in lung epithelial cells. J Virol 76: 1071–1076

    PubMed  CAS  Google Scholar 

  39. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19: 225–234

    PubMed  CAS  Google Scholar 

  40. Lee SW, Youn JW, Seong BL, Sung YC (1999) IL-6 induces long-term protective immunity against a lethal challenge of influenza virus. Vaccine 17: 490–496

    PubMed  CAS  Google Scholar 

  41. Schmitz N, Kurrer M, Bachmann MF, Kopf M (2005) Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 79: 6441–6448

    PubMed  CAS  Google Scholar 

  42. Denton AE, Doherty PC, Turner SJ, La Gruta NL (2007) IL-18, but not IL-12, is required for optimal cytokine production by influenza virus-specific CD8(+) T cells. Eur J Immunol 37: 368–375

    PubMed  CAS  Google Scholar 

  43. Bhardwaj N, Seder RA, Reddy A, Feldman MV (1996) IL-12 in conjunction with dendritic cells enhances antiviral CD8+ CTL responses in vitro. J Clin Invest 98: 715–722

    PubMed  CAS  Google Scholar 

  44. Monteiro JM, Harvey C, Trinchieri G (1998) Role of interleukin-12 in primary influenza virus infection. J Virol 72: 4825–4831

    PubMed  CAS  Google Scholar 

  45. Nguyen HH, van Ginkel FW, Vu HL, Novak MJ, McGhee JR, Mestecky J (2000) Gamma interferon is not required for mucosal cytotoxic T-lymphocyte responses or heterosubtypic immunity to influenza A virus infection in mice. J Virol 74: 5495–5501

    PubMed  CAS  Google Scholar 

  46. Bot A, Bot S, Bona CA (1998) Protective role of gamma interferon during the recall response to influenza virus. J Virol 72: 6637–6645

    PubMed  CAS  Google Scholar 

  47. Baumgarth N, Kelso A (1996) In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol 70: 4411–4418

    PubMed  CAS  Google Scholar 

  48. Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell IB, Smithies O (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269: 1583–1585

    PubMed  CAS  Google Scholar 

  49. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N (2000) Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156: 1951–1959

    PubMed  CAS  Google Scholar 

  50. La Gruta NL, Kedzierska K, Stambas J, Doherty PC (2007) A question of selfpreservation: Immunopathology in influenza virus infection. Immunol Cell Biol 85: 85–92

    PubMed  Google Scholar 

  51. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y, Kim JH, Halfmann P, Hatta M et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445: 319–323

    PubMed  CAS  Google Scholar 

  52. Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, Theriault S, Suzuki H, Nishimura H, Mitamura K, Sugaya N et al (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431: 703–707

    PubMed  CAS  Google Scholar 

  53. Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, Basler CF, Palese P, Taubenberger JK, Garcia-Sastre A et al (2006) Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443: 578–581

    PubMed  CAS  Google Scholar 

  54. Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins: Humoral lectins of the innate immune defense. Annu Rev Immunol 21: 547–578

    PubMed  CAS  Google Scholar 

  55. Crouch E, Hartshorn K, Ofek I (2000) Collectins and pulmonary innate immunity. Immunol Rev 173: 52–65

    PubMed  CAS  Google Scholar 

  56. Hartshorn KL, White MR, Shepherd V, Reid K, Jensenius JC, Crouch EC (1997) Mechanisms of anti-influenza activity of surfactant proteins A and D: Comparison with serum collectins. Am J Physiol 273: L1156–1166

    PubMed  CAS  Google Scholar 

  57. Benne CA, Kraaijeveld CA, van Strijp JA, Brouwer E, Harmsen M, Verhoef J, van Golde LM, van Iwaarden JF (1995) Interactions of surfactant protein A with influenza A viruses: Binding and neutralization. J Infect Dis 171: 335–341

    PubMed  CAS  Google Scholar 

  58. Hartshorn K, Chang D, Rust K, White M, Heuser J, Crouch E (1996) Interactions of recombinant human pulmonary surfactant protein D and SP-D multimers with influenza A. Am J Physiol 271: L753–762

    PubMed  CAS  Google Scholar 

  59. Hartshorn KL, Sastry K, White MR, Anders EM, Super M, Ezekowitz RA, Tauber A (1993) I. Human mannose-binding protein functions as an opsonin for influenza A viruses. J Clin Invest 91: 1414–1420

    PubMed  CAS  Google Scholar 

  60. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60: 1068–1074

    PubMed  CAS  Google Scholar 

  61. Reading PC, Hartley CA, Ezekowitz RA, Anders EM (1995) A serum mannose-binding lectin mediates complement-dependent lysis of influenza virusinfected cells. Biochem Biophys Res Commun 217: 1128–1136

    PubMed  CAS  Google Scholar 

  62. Hartshorn KL, Reid KB, White MR, Jensenius JC, Morris SM, Tauber AI, Crouch E (1996) Neutrophil deactivation by influenza A viruses: Mechanisms of protection after viral opsonization with collectins and hemagglutinationinhibiting antibodies. Blood 87: 3450–3461

    PubMed  CAS  Google Scholar 

  63. Benne CA, Benaissa-Trouw B, van Strijp JA, Kraaijeveld CA, van Iwaarden JF (1997) Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages. Eur J Immunol 27: 886–890

    PubMed  CAS  Google Scholar 

  64. Hartley CA, Reading PC, Ward AC, Anders EM (1997) Changes in the hemagglutinin molecule of influenza type A (H3N2) virus associated with increased virulence for mice. Arch Virol 142: 75–88

    PubMed  CAS  Google Scholar 

  65. Leikina E, Delanoe-Ayari H, Melikov K, Cho MS, Chen A, Waring AJ, Wang W, Xie Y, Loo JA, Lehrer RI, Chernomordik LV (2005) Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat Immunol 6: 995–1001

    PubMed  CAS  Google Scholar 

  66. Graham MB, Braciale TJ (1997) Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J Exp Med 186: 2063–2068

    PubMed  CAS  Google Scholar 

  67. Lee BO, Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, Makris M, Sprague F, Lund FE, Randall TD (2005) CD4 T cell-independent antibody response promotes resolution of primary influenza infection and helps to prevent reinfection. J Immunol 175: 5827–5838

    PubMed  CAS  Google Scholar 

  68. Mozdzanowska K, Furchner M, Zharikova D, Feng J, Gerhard W (2005) Roles of CD4+ T-cell-independent and-dependent antibody responses in the control of influenza virus infection: Evidence for noncognate CD4+ T-cell activities that enhance the therapeutic activity of antiviral antibodies. J Virol 79: 5943–5951

    PubMed  CAS  Google Scholar 

  69. Kopf M, Brombacher F, Bachmann MF (2002) Role of IgM antibodies versus Bc ells in influenza virus-specific immunity. Eur J Immunol 32: 2229–2236

    PubMed  CAS  Google Scholar 

  70. Topham DJ, Tripp RA, Hamilton-Easton AM, Sarawar SR, Doherty PC (1996) Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J Immunol 157: 2947–2952

    PubMed  CAS  Google Scholar 

  71. Riberdy JM, Christensen JP, Branum K, Doherty PC (2000) Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice. J Virol 74: 9762–9765

    PubMed  CAS  Google Scholar 

  72. Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21: 624–630

    PubMed  CAS  Google Scholar 

  73. Ochsenbein AF, Pinschewer DD, Odermatt B, Ciurea A, Hengartner H, Zinkernagel RM (2000) Correlation of T cell independence of antibody responses with antigen dose reaching secondary lymphoid organs: Implications for splenectomized patients and vaccine design. J Immunol 164: 6296–6302

    PubMed  CAS  Google Scholar 

  74. Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192: 271–280

    PubMed  CAS  Google Scholar 

  75. Savitsky D, Calame K (2006) B-1 B lymphocytes require Blimp-1 for immunoglobulin secretion. J Exp Med 203: 2305–2314

    PubMed  CAS  Google Scholar 

  76. Harada Y, Muramatsu M, Shibata T, Honjo T, Kuroda K (2003) Unmutated immunoglobulin M can protect mice from death by influenza virus infection. J Exp Med 197: 1779–1785

    PubMed  CAS  Google Scholar 

  77. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu Rev Biochem 69: 531–569

    PubMed  CAS  Google Scholar 

  78. Bizebard T, Gigant B, Rigolet P, Rasmussen B, Diat O, Bosecke P, Wharton SA, Skehel JJ, Knossow M (1995) Structure of influenza virus haemagglutinin complexed with a neutralizing antibody. Nature 376: 92–94

    PubMed  CAS  Google Scholar 

  79. Fleury D, Barrere B, Bizebard T, Daniels RS, Skehel JJ, Knossow M (1999) A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. Nat Struct Biol 6: 530–534

    PubMed  CAS  Google Scholar 

  80. Murphy BR, Kasel JA, Chanock RM (1972) Association of serum anti-neuraminidase antibody with resistance to influenza in man. N Engl J Med 286: 1329–1332

    PubMed  CAS  Google Scholar 

  81. Belshe RB, Gruber WC, Mendelman PM, Cho I, Reisinger K, Block SL, Wittes J, Iacuzio D, Piedra P, Treanor J et al (2000) Efficacy of vaccination with live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine against a variant (A/Sydney) not contained in the vaccine. J Pediatr 136: 168–175

    PubMed  CAS  Google Scholar 

  82. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers WA (1999) Universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5: 1157–1163

    PubMed  CAS  Google Scholar 

  83. Lamb RA, Zebedee SL, Richardson CD (1985) Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 40: 627–633

    PubMed  CAS  Google Scholar 

  84. Jegerlehner A, Schmitz N, Storni T, Bachmann MF (2004) Influenza A vaccine based on the extracellular domain of M2: Weak protection mediated via antibodydependent NK cell activity. J Immunol 172: 5598–5605

    PubMed  CAS  Google Scholar 

  85. Sangster MY, Riberdy JM, Gonzalez M, Topham DJ, Baumgarth N, Doherty P (2003) C. An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T-B interactions. J Exp Med 198: 1011–1021

    PubMed  CAS  Google Scholar 

  86. Scherle PA, Palladino G, Gerhard W (1992) Mice can recover from pulmonary influenza virus infection in the absence of class I-restricted cytotoxic T cells. J Immunol 148: 212–217

    PubMed  CAS  Google Scholar 

  87. Topham DJ, Tripp RA, Sarawar SR, Sangster MY, Doherty PC (1996) Immune CD4+ T cells promote the clearance of influenza virus from major histocompatibility complex class II-/-respiratory epithelium. J Virol 70: 1288–1291

    PubMed  CAS  Google Scholar 

  88. Lee BO, Moyron-Quiroz J, Rangel-Moreno J, Kusser KL, Hartson L, Sprague F, Lund FE, Randall TD (2003) CD40, but not CD154, expression on B cells is necessary for optimal primary B cell responses. J Immunol 171: 5707–5717

    PubMed  CAS  Google Scholar 

  89. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161

    PubMed  CAS  Google Scholar 

  90. Sigal LJ, Rock KL (2000) Bone marrow-derived antigen-presenting cells are required for the generation of cytotoxic T lymphocyte responses to viruses and use transporter associated with antigen presentation (TAP)-dependent and-independent pathways of antigen presentation. J Exp Med 192: 1143–1150

    PubMed  CAS  Google Scholar 

  91. Belz GT, Wilson NS, Smith CM, Mount AM, Carbone FR, Heath WR (2006) Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. Eur J Immunol 36: 327–335

    PubMed  CAS  Google Scholar 

  92. Zammit DJ, Cauley LS, Pham QM, Lefrancois L (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22: 561–570

    PubMed  CAS  Google Scholar 

  93. Legge KL, Braciale TJ (2005) Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression. Immunity 23: 649–659

    PubMed  CAS  Google Scholar 

  94. Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR (2006) A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176: 2161–2172

    PubMed  CAS  Google Scholar 

  95. Henri S, Vremec D, Kamath A, Waithman J, Williams S, Benoist C, Burnham K, Saeland S, Handman E, Shortman K (2001) The dendritic cell populations of mouse lymph nodes. J Immunol 167: 741–748

    PubMed  CAS  Google Scholar 

  96. Legge KL, Braciale TJ (2003) Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18: 265–277

    PubMed  CAS  Google Scholar 

  97. McWilliam AS, Napoli S, Marsh AM, Pemper FL, Nelson DJ, Pimm CL, Stumbles PA, Wells TN, Holt PG (1996) Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J Exp Med 184: 2429–2432

    PubMed  CAS  Google Scholar 

  98. Yamamoto N, Suzuki S, Shirai A, Suzuki M, Nakazawa M, Nagashima Y, Okubo T (2000) Dendritic cells are associated with augmentation of antigen sensitization by influenza A virus infection in mice. Eur J Immunol 30: 316–326

    PubMed  CAS  Google Scholar 

  99. Nonacs R, Humborg C, Tam JP, Steinman RM (1992) Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J Exp Med 176: 519–529

    PubMed  CAS  Google Scholar 

  100. Macatonia SE, Taylor PM, Knight SC, Askonas BA (1989) Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro. J Exp Med 169: 1255–1264

    PubMed  CAS  Google Scholar 

  101. Bhardwaj N, Bender A, Gonzalez N, Bui LK, Garrett MC, Steinman RM (1994) Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J Clin Invest 94: 797–807

    PubMed  CAS  Google Scholar 

  102. Oh S, Eichelberger MC (1999) Influenza virus neuraminidase alters allogeneic T cell proliferation. Virology 264: 427–435

    PubMed  CAS  Google Scholar 

  103. Oh S, McCaffery JM, Eichelberger MC (2000) Dose-dependent changes in influenza virus-infected dendritic cells result in increased allogeneic T-cell proliferation at low, but not high, doses of virus. J Virol 74: 5460–5469

    PubMed  CAS  Google Scholar 

  104. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392: 86–89

    PubMed  CAS  Google Scholar 

  105. Wilson NS, Behrens GM, Lundie RJ, Smith CM, Waithman J, Young L, Forehan SP, Mount A, Steptoe RJ, Shortman KD et al (2006) Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs crosspresentation and antiviral immunity. Nat Immunol 7: 165–172

    PubMed  CAS  Google Scholar 

  106. Belz GT, Smith CM, Kleinert L, Reading P, Brooks A, Shortman K, Carbone FR, Heath WR (2004) Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci USA 101: 8670–8675

    PubMed  CAS  Google Scholar 

  107. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA (2001) Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193: 51–60

    PubMed  CAS  Google Scholar 

  108. Carbone FR, Belz GT, Heath WR (2004) Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol 25: 655–658

    PubMed  CAS  Google Scholar 

  109. Randolph GJ (2006) Migratory dendritic cells: Sometimes simply ferries? Immunity 25: 15–18

    PubMed  CAS  Google Scholar 

  110. Lawrence CW, Braciale TJ (2004) Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J Immunol 173: 1209–1218

    PubMed  CAS  Google Scholar 

  111. Flynn KJ, Riberdy JM, Christensen JP, Altman JD, Doherty PC (1999) In vivo proliferation of naive and memory influenza-specific CD8(+) T cells. Proc Natl Acad Sci USA 96: 8597–8602

    PubMed  CAS  Google Scholar 

  112. Zammit DJ, Turner DL, Klonowski KD, Lefrancois L, Cauley LS (2006) Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24: 439–449

    PubMed  CAS  Google Scholar 

  113. Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL (2005) Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J Exp Med 202: 697–706

    PubMed  CAS  Google Scholar 

  114. Doherty PC, Christensen JP (2000) Accessing complexity: The dynamics of virus-specific T cell responses. Annu Rev Immunol 18: 561–592

    PubMed  CAS  Google Scholar 

  115. Julia V, Hessel EM, Malherbe L, Glaichenhaus N, O’Garra A, Coffman RL (2002) A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 16: 271–283

    PubMed  CAS  Google Scholar 

  116. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2: 116–126

    PubMed  CAS  Google Scholar 

  117. Croft M (2003) Co-stimulatory members of the TNFR family: Keys to effective T-cell immunity? Nat Rev Immunol 3: 609–620

    PubMed  CAS  Google Scholar 

  118. Bertram EM, Dawicki W, Watts TH (2004) Role of T cell costimulation in antiviral immunity. Semin Immunol 16: 185–196

    PubMed  CAS  Google Scholar 

  119. Halstead ES, Mueller YM, Altman JD, Katsikis PD (2002) In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nat Immunol 3: 536–541

    PubMed  CAS  Google Scholar 

  120. Hendriks J, Xiao Y, Borst J (2003) CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 198: 1369–1380

    PubMed  CAS  Google Scholar 

  121. Bertram EM, Lau P, Watts TH (2002) Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 168: 3777–3785

    PubMed  CAS  Google Scholar 

  122. Lumsden JM, Roberts JM, Harris NL, Peach RJ, Ronchese F (2000) Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J Immunol 164: 79–85

    PubMed  CAS  Google Scholar 

  123. Liu Y, Wenger RH, Zhao M, Nielsen PJ (1997) Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med 185: 251–262

    PubMed  CAS  Google Scholar 

  124. Yewdell JW, Del Val M (2004) Immunodominance in TCD8+ responses to viruses: Cell biology, cellular immunology, and mathematical models. Immunity 21: 149–153

    PubMed  CAS  Google Scholar 

  125. Belz GT, Stevenson PG, Doherty PC (2000) Contemporary analysis of MHCrelated immunodominance hierarchies in the CD8+ T cell response to influenza A viruses. J Immunol 165: 2404–2409

    PubMed  CAS  Google Scholar 

  126. Chen W, Bennink JR, Morton PA, Yewdell JW (2002) Mice deficient in perforin, CD4+ T cells, or CD28-mediated signaling maintain the typical immunodominance hierarchies of CD8+ T-cell responses to influenza virus. J Virol 76: 10332–10337

    PubMed  CAS  Google Scholar 

  127. DeBenedette MA, Wen T, Bachmann MF, Ohashi PS, Barber BH, Stocking KL, Peschon JJ, Watts TH (1999) Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol 163: 4833–4841

    PubMed  CAS  Google Scholar 

  128. Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, Ecabert B, Odermatt B, Bachmann MF (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity 11: 699–708

    PubMed  CAS  Google Scholar 

  129. Bertram EM, Tafuri A, Shahinian A, Chan VS, Hunziker L, Recher M, Ohashi PS, Mak TW, Watts TH (2002) Role of ICOS versus CD28 in antiviral immunity. Eur J Immunol 32: 3376–3385

    PubMed  CAS  Google Scholar 

  130. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J (2000) CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 1: 433–440

    PubMed  CAS  Google Scholar 

  131. Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG (1997) Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev 159: 105–117

    PubMed  CAS  Google Scholar 

  132. Bender BS, Croghan T, Zhang L, Small PA Jr (1992) Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 175: 1143–1145

    PubMed  CAS  Google Scholar 

  133. Tripp RA, Sarawar SR, Doherty PC (1995) Characteristics of the influenza virus-specific CD8+ T cell response in mice homozygous for disruption of the H-2lAb gene. J Immunol 155: 2955–2959

    PubMed  CAS  Google Scholar 

  134. Cerwenka A, Morgan TM, Dutton RW (1999) Naive, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: Homing properties rather than initial frequencies are crucial. J Immunol 163: 5535–5543

    PubMed  CAS  Google Scholar 

  135. Galkina E, Thatte J, Dabak V, Williams MB, Ley K, Braciale TJ (2005) Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J Clin Invest 115: 3473–3483

    PubMed  CAS  Google Scholar 

  136. Thatte J, Dabak V, Williams MB, Braciale TJ, Ley K (2003) LFA-1 is required for retention of effector CD8 T cells in mouse lungs. Blood 101: 4916–4922

    PubMed  CAS  Google Scholar 

  137. Belz GT, Xie W, Altman JD, Doherty PC (2000) A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much less apparent following secondary challenge. J Virol 74: 3486–3493

    PubMed  CAS  Google Scholar 

  138. Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44: 959–968

    PubMed  CAS  Google Scholar 

  139. Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC (1998) Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8: 683–691

    PubMed  CAS  Google Scholar 

  140. Belz GT, Xie W, Doherty PC (2001) Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J Immunol 166: 4627–4633

    PubMed  CAS  Google Scholar 

  141. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P et al (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7: 1306–1312

    PubMed  CAS  Google Scholar 

  142. Vitiello A, Yuan L, Chesnut RW, Sidney J, Southwood S, Farness P, Jackson MR, Peterson PA, Sette A (1996) Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. J Immunol 157: 5555–5562

    PubMed  CAS  Google Scholar 

  143. Andreansky SS, Stambas J, Thomas PG, Xie W, Webby RJ, Doherty PC (2005) Consequences of immunodominant epitope deletion for minor influenza virusspecific CD8+-T-cell responses. J Virol 79: 4329–4339

    PubMed  CAS  Google Scholar 

  144. Webby RJ, Andreansky S, Stambas J, Rehg JE, Webster RG, Doherty PC, Turner SJ (2003) Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci USA 100: 7235–7240

    PubMed  CAS  Google Scholar 

  145. Marshall DR, Turner SJ, Belz GT, Wingo S, Andreansky S, Sangster MY, Riberdy JM, Liu T, Tan M, Doherty PC (2001) Measuring the diaspora for virus-specific CD8+ T cells. Proc Natl Acad Sci USA 98: 6313–6318

    PubMed  CAS  Google Scholar 

  146. Turner SJ, Diaz G, Cross R, Doherty PC (2003) Analysis of clonotype distribution and persistence for an influenza virus-specific CD8+ T cell response. Immunity 18: 549–559

    PubMed  CAS  Google Scholar 

  147. La Gruta NL, Turner SJ, Doherty PC (2004) Hierarchies in cytokine expression profiles for acute and resolving influenza virus-specific CD8+ T cell responses: Correlation of cytokine profile and TCR avidity. J Immunol 172: 5553–5560

    PubMed  Google Scholar 

  148. Johnson BJ, Costelloe EO, Fitzpatrick DR, Haanen JB, Schumacher TN, Brown LE, Kelso A (2003) Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci USA 100: 2657–2662

    PubMed  CAS  Google Scholar 

  149. Liu B, Mori I, Hossain MJ, Dong L, Chen Z, Kimura Y (2003) Local immune responses to influenza virus infection in mice with a targeted disruption of perforin gene. Microb Pathog 34: 161–167

    PubMed  CAS  Google Scholar 

  150. Topham DJ, Tripp RA, Doherty PC (1997) CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159: 5197–5200

    PubMed  CAS  Google Scholar 

  151. Price GE, Huang L, Ou R, Zhang M, Moskophidis D (2005) Perforin and Fas cytolytic pathways coordinately shape the selection and diversity of CD8+-Tcell escape variants of influenza virus. J Virol 79: 8545–8559

    PubMed  CAS  Google Scholar 

  152. Fujimoto I, Takizawa T, Ohba Y, Nakanishi Y (1998) Co-expression of Fas and Fas-ligand on the surface of influenza virus-infected cells. Cell Death Differ 5: 426–431

    PubMed  CAS  Google Scholar 

  153. Kedzierska K, La Gruta NL, Turner SJ, Doherty PC (2006) Establishment and recall of CD8+ T-cell memory in a model of localized transient infection. Immunol Rev 211: 133–145

    PubMed  CAS  Google Scholar 

  154. Hogan RJ, Usherwood EJ, Zhong W, Roberts AA, Dutton RW, Harmsen AG, Woodland DL (2001) Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol 166: 1813–1822

    PubMed  CAS  Google Scholar 

  155. Wiley JA, Hogan RJ, Woodland DL, Harmsen AG (2001) Antigen-specific CD8(+) T cells persist in the upper respiratory tract following influenza virus infection. J Immunol 167: 3293–3299

    PubMed  CAS  Google Scholar 

  156. Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, Sprague AG, Doherty PC, de Fougerolles AR, Topham DJ (2004) The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20: 167–179

    PubMed  CAS  Google Scholar 

  157. Crowe SR, Turner SJ, Miller SC, Roberts AD, Rappolo RA, Doherty PC, Ely KH, Woodland DL (2003) Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. J Exp Med 198: 399–410

    PubMed  CAS  Google Scholar 

  158. La Gruta NL, Kedzierska K, Pang K, Webby R, Davenport M, Chen W, Turner SJ, Doherty PC (2006) A virus-specific CD8+ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies. Proc Natl Acad Sci USA 103: 994–999

    PubMed  Google Scholar 

  159. Brown DM, Roman E, Swain SL (2004) CD4 T cell responses to influenza infection. Semin Immunol 16: 171–177

    PubMed  CAS  Google Scholar 

  160. Roman E, Miller E, Harmsen A, Wiley J, Von Andrian UH, Huston G, Swain SL (2002) CD4 effector T cell subsets in the response to influenza: Heterogeneity, migration, and function. J Exp Med 196: 957–968

    PubMed  CAS  Google Scholar 

  161. Mozdzanowska K, Furchner M, Maiese K, Gerhard W (1997) CD4+ T cells are ineffective in clearing a pulmonary infection with influenza type A virus in the absence of B cells. Virology 239: 217–225

    PubMed  CAS  Google Scholar 

  162. Graham MB, Braciale VL, Braciale TJ (1994) Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med 180: 1273–1282

    PubMed  CAS  Google Scholar 

  163. Powell TJ, Brown DM, Hollenbaugh JA, Charbonneau T, Kemp RA, Swain SL, Dutton RW (2004) CD8+ T cells responding to influenza infection reach and persist at higher numbers than CD4+ T cells independently of precursor frequency. Clin Immunol 113: 89–100

    PubMed  CAS  Google Scholar 

  164. Homann D, Teyton L, Oldstone MB (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7: 913–919

    PubMed  CAS  Google Scholar 

  165. Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC (2002) Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 76: 12388–12393

    PubMed  CAS  Google Scholar 

  166. Bender A, Bui LK, Feldman MA, Larsson M, Bhardwaj N (1995) Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses. J Exp Med 182: 1663–1671

    PubMed  CAS  Google Scholar 

  167. Larsson M, Messmer D, Somersan S, Fonteneau JF, Donahoe SM, Lee M, Dunbar PR, Cerundolo V, Julkunen I, Nixon DF, Bhardwaj N (2000) Requirement of mature dendritic cells for efficient activation of influenza Aspecific memory CD8+ T cells. J Immunol 165: 1182–1190

    PubMed  CAS  Google Scholar 

  168. Crowe SR, Miller SC, Brown DM, Adams PS, Dutton RW, Harmsen AG, Lund FE, Randall TD, Swain SL, Woodland DL (2006) Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine 24: 457–467

    PubMed  CAS  Google Scholar 

  169. Palese P, Young JF (1982) Variation of influenza A, B, and C viruses. Science 215: 1468–1474

    PubMed  CAS  Google Scholar 

  170. Yewdell JW, Webster RG, Gerhard WU (1979) Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature 279: 246–248

    PubMed  CAS  Google Scholar 

  171. Webster RG, Laver WG, Air GM, Schild GC (1982) Molecular mechanisms of variation in influenza viruses. Nature 296: 115–121

    PubMed  CAS  Google Scholar 

  172. Bean WJ, Schell M, Katz J, Kawaoka Y, Naeve C, Gorman O, Webster RG (1992) Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. J Virol 66: 1129–1138

    PubMed  CAS  Google Scholar 

  173. Berkhoff EG, de Wit E, Geelhoed-Mieras MM, Boon AC, Symons J, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2005) Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol 79: 11239–11246

    PubMed  CAS  Google Scholar 

  174. Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibodybinding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289: 373–378

    PubMed  CAS  Google Scholar 

  175. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982) The antigenic struc-ture of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31: 417–427

    PubMed  CAS  Google Scholar 

  176. Price GE, Ou R, Jiang H, Huang L, Moskophidis D (2000) Viral escape by selection of cytotoxic T cell-resistant variants in influenza A virus pneumonia. J Exp Med 191: 1853–1867

    PubMed  CAS  Google Scholar 

  177. Rimmelzwaan GF, Boon AC, Voeten JT, Berkhoff EG, Fouchier RA, Osterhaus AD (2004) Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res 103: 97–100

    PubMed  CAS  Google Scholar 

  178. Voeten JT, Bestebroer TM, Nieuwkoop NJ, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2000) Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J Virol 74: 6800–6807

    PubMed  CAS  Google Scholar 

  179. Boon AC, de Mutsert G, Graus YM, Fouchier RA, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF (2002) Sequence variation in a newly identified HLAB35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J Virol 76: 2567–2572

    PubMed  CAS  Google Scholar 

  180. Boon AC, de Mutsert G, van Baarle D, Smith DJ, Lapedes AS, Fouchier RA, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF (2004) Recognition of homoand heterosubtypic variants of influenza A viruses by human CD8+ T lymphocytes. J Immunol 172: 2453–2460

    PubMed  CAS  Google Scholar 

  181. Boon AC, de Mutsert G, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2006) The hypervariable immunodominant NP418-426 epitope from the influenza A virus nucleoprotein is recognized by cytotoxic T lymphocytes with high functional avidity. J Virol 80: 6024–6032

    PubMed  CAS  Google Scholar 

  182. Webby RJ, Webster RG (2003) Are we ready for pandemic influenza? Science 302: 1519–1522

    PubMed  CAS  Google Scholar 

  183. Cox NJ, Subbarao K (2000) Global epidemiology of influenza: Past and present. Annu Rev Med 51: 407–421

    PubMed  CAS  Google Scholar 

  184. Schafer JR, Kawaoka Y, Bean WJ, Suss J, Senne D, Webster RG (1993) Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194: 781–788

    PubMed  CAS  Google Scholar 

  185. Kawaoka Y, Krauss S, Webster RG (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63: 4603–4608

    PubMed  CAS  Google Scholar 

  186. Reid AH, Taubenberger JK, Fanning TG (2004) Evidence of an absence: The genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol 2: 909–914

    PubMed  CAS  Google Scholar 

  187. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437: 889–893

    PubMed  CAS  Google Scholar 

  188. Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferondeficient systems. Virology 252: 324–330

    PubMed  CAS  Google Scholar 

  189. Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, Haswell LE, Al-Shamkhani A, Flavell R, Borrow P, Reis e Sousa C (2003) Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424: 324–328

    PubMed  CAS  Google Scholar 

  190. Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster T (2000) Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol 74: 6203–6206

    PubMed  CAS  Google Scholar 

  191. Li S, Min JY, Krug RM, Sen GC (2006) Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349: 13–21

    PubMed  CAS  Google Scholar 

  192. Min JY, Krug RM (2006) The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’-5’ oligo (A) synthetase/ RNase L pathway. Proc Natl Acad Sci USA 103: 7100–7105

    PubMed  CAS  Google Scholar 

  193. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A (2000) Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 74: 11566–11573

    PubMed  CAS  Google Scholar 

  194. Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A (2000) Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74: 7989–7996

    PubMed  CAS  Google Scholar 

  195. Garcia-Sastre A (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279: 375–384

    PubMed  CAS  Google Scholar 

  196. Ferko B, Stasakova J, Romanova J, Kittel C, Sereinig S, Katinger H, Egorov A (2004) Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 78: 13037–13045

    PubMed  CAS  Google Scholar 

  197. Jameson J, Cruz J, Terajima M, Ennis FA (1999) Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J Immunol 162: 7578–7583

    PubMed  CAS  Google Scholar 

  198. Jameson J, Cruz J, Ennis FA (1998) Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J Virol 72: 8682–8689

    PubMed  CAS  Google Scholar 

  199. Schulman JL, Kilbourne ED (1965) Induction of partial specific heterotypic immunity in mice by a single infection with influenza A virus. J Bacteriol 89: 170–174

    PubMed  CAS  Google Scholar 

  200. Kreijtz JH, Bodewes R, van Amerongen G, Kuiken T, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2007) Primary influenza A virus infection induces cross-protective immunity against a lethal infection with a heterosubtypic virus strain in mice. Vaccine 25: 612–620

    PubMed  CAS  Google Scholar 

  201. Epstein SL, Lo CY, Misplon JA, Lawson CM, Hendrickson BA, Max EE, Subbarao K (1997) Mechanisms of heterosubtypic immunity to lethal influenza A virus infection in fully immunocompetent, T cell-depleted, beta2-microglobulin-deficient, and J chain-deficient mice. J Immunol 158: 1222–1230

    PubMed  CAS  Google Scholar 

  202. Benton KA, Misplon JA, Lo CY, Brutkiewicz RR, Prasad SA, Epstein SL (2001) Heterosubtypic immunity to influenza A virus in mice lacking IgA, all Ig, NKT cells, or gamma delta T cells. J Immunol 166: 7437–7445

    PubMed  CAS  Google Scholar 

  203. Nguyen HH, Moldoveanu Z, Novak MJ, van Ginkel FW, Ban E, Kiyono H, McGhee JR, Mestecky J (1999) Heterosubtypic immunity to lethal influenza A virus infection is associated with virus-specific CD8(+) cytotoxic T lymphocyte responses induced in mucosa-associated tissues. Virology 254: 50–60

    PubMed  CAS  Google Scholar 

  204. Nguyen HH, van Ginkel FW, Vu HL, McGhee JR, Mestecky J (2001) Heterosubtypic immunity to influenza A virus infection requires B cells but not CD8+ cytotoxic T lymphocytes. J Infect Dis 183: 368–376

    PubMed  CAS  Google Scholar 

  205. Powell TJ, Strutt T, Reome J, Hollenbaugh JA, Roberts AD, Woodland DL, Swain SL, Dutton RW (2007) Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J Immunol 178: 1030–1038

    PubMed  CAS  Google Scholar 

  206. Doherty PC, Turner SJ, Webby RG, Thomas PG (2006) Influenza and the challenge for immunology. Nat Immunol 7: 449–455

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mintern, J.D., Guillonneau, C., Turner, S.J., Doherty, P.C. (2008). The immune response to influenza A viruses. In: Rappuoli, R., Del Giudice, G. (eds) Influenza Vaccines for the Future. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8371-8_6

Download citation

Publish with us

Policies and ethics