Advertisement

Modeling influenza pandemic and interventions

  • Caterina Rizzo
  • Marta Luisa Ciofi degli Atti
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Modeling is an important aspect of pandemic preparedness, and different approaches have been conducted to date. The epidemic dynamics and the assessment of containment or mitigation strategies, such as vaccination, border restriction, antiviral treatment of cases and prophylaxis of household or school/workplace contacts of index cases can be predicted by employing classical compartmental models [susceptible, exposed but not yet infectious, infectious, recovered and no longer susceptible (SEIR), possibly with age and/or geographic component]. Other authors have implemented the evaluation of realistic, individually targeted, public health intervention strategies that requires highly detailed models, such as the individual based model (IBM). According to the predictive models used, an influenza pandemic would spread worldwide over a period of 2–7 months, depending on the basic reproductive number (a measure on how many people an infectious individual infects on average), and reducing transmission would entail combining control measures, specifically, reducing contacts and performing both therapeutic and prophylactic use of antivirals and vaccination. International border restrictions are unlikely to delay the spread by more than 2–3 weeks unless more than 99% effective. Similar results were obtained for social distancing measures, such as school closure. Treatment of clinical cases and prophylaxis of close contacts can lower transmission, reducing the clinical attack rate by 40–50%, but it would be logistically challenging, requiring a stockpile for more than 25% of the population. Vaccine stockpiled in advance, even if less efficacious than pandemic vaccines, could significantly reduce the cumulative attack rates. In Italy, the combination of the described measures would lead to 10–15 million of cases being avoided, depending on vaccine effectiveness (taken as 50% or 70%). Mathematical models are necessary to plan and evaluate interventions based on different strategies. They represent a relevant tool to assist public health decision-making in preparing the response to a new influenza pandemic.

Keywords

Avian Influenza Attack Rate Influenza Pandemic ZANAM IVIR VACC INATION 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glezen WP (1996) Emerging infections: Pandemic influenza. Epidemiol Rev 18: 64–76PubMedGoogle Scholar
  2. 2.
    Simonsen L (1999) The global impact of influenza on morbidity and mortality. Vaccine 17(Suppl 1): S3–10PubMedCrossRefGoogle Scholar
  3. 3.
    Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD et al (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430: 209–213PubMedCrossRefGoogle Scholar
  4. 6.
    Monto AS (2006) Vaccines and antiviral drugs in pandemic preparedness. Emerg Infect Dis 12: 55–60PubMedGoogle Scholar
  5. 7.
    Stephenson I, Gust I, Kieny MP, Pervikov Y (2006) Development and evaluation of influenza pandemic vaccines. Lancet Infect Dis 6: 71–72PubMedCrossRefGoogle Scholar
  6. 8.
    Influenza Team ECDPaC (2007) Pandemic preparedness in the European Union-Multi-sectoral planning needed. Eur Surveill 12: E070222.1Google Scholar
  7. 10.
    Glass RJ, Glass LM, Beyeler WE, Min HJ (2006) Targeted social distancing design for pandemic influenza. Emerg Infect Dis 12: 1671–1681PubMedGoogle Scholar
  8. 11.
    Rizzo C (2007) Trends for influenza-related deaths during pandemic and epidemic seasons, Italy, 1969–2001. Emerg Infect Dis 13: 694–699PubMedGoogle Scholar
  9. 12.
    Viboud C, Grais RF, Lafont BA, Miller MA, Simonsen L (2005) Multinational impact of the 1968 Hong Kong influenza pandemic: Evidence for a smoldering pandemic. J Infect Dis 192: 233–248PubMedCrossRefGoogle Scholar
  10. 13.
    Rocchi G, Ragona G, de Felici A, Muzzi A (1974) Epidemiological evaluation of influenza in Italy. Bull World Health Organ 50: 401–406PubMedGoogle Scholar
  11. 14.
    Chun BC (2005) Modelling the impact of pandemic influenza. J Prev Med Pub Health 38: 379–385Google Scholar
  12. 15.
    Doyle A, Bonmarin I, Levy-Bruhl D, Strat YL, Desenclos JC (2006) Influenza pandemic preparedness in France: Modelling the impact of interventions. J Epidemiol Community Health 60: 399–404PubMedCrossRefGoogle Scholar
  13. 16.
    Epico working group. (2007) Modelling scenarios of diffusion and control of pandemic influenza, Italy. Euro Surveill 12: E070104Google Scholar
  14. 17.
    Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS (2006) Strategies for mitigating an influenza pandemic. Nature 442: 448–452PubMedCrossRefGoogle Scholar
  15. 18.
    Germann TC, Kadau K, Longini IM Jr, Macken CA (2006) Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci USA 103: 5935–5940PubMedCrossRefGoogle Scholar
  16. 19.
    Hak E, Meijboom MJ, Buskens E (2006) Modelling the health-economic impact of the next influenza pandemic in The Netherlands. Vaccine 24: 6756–6760PubMedCrossRefGoogle Scholar
  17. 20.
    Anderson RM, May RM (1992) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New YorkGoogle Scholar
  18. 21.
    Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A (2007) Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLoS Med 4: e13PubMedCrossRefGoogle Scholar
  19. 22.
    Flahault A, Vergu E, Coudeville L, Grais RF (2006) Strategies for containing a global influenza pandemic. Vaccine 24: 6751–6755PubMedCrossRefGoogle Scholar
  20. 23.
    Riley S (2007) Large-scale spatial-transmission models of infectious disease. Science 316: 1298–1301PubMedCrossRefGoogle Scholar
  21. 24.
    Carrat F, Luong J, Lao H, Salle AV, Lajaunie C, Wackernagel H (2006) A’ small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Med 4: 26PubMedCrossRefGoogle Scholar
  22. 25.
    Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME (2005) Containing pandemic influenza at the source. Science 309: 1083–1087PubMedCrossRefGoogle Scholar
  23. 26.
    Glezen WP, Simonsen L (2006) Commentary: Benefits of influenza vaccine in US elderly-New studies raise questions. Int J Epidemiol 35: 352–353PubMedCrossRefGoogle Scholar
  24. 27.
    Elveback LR, Fox JP, Ackerman E, Langworthy A, Boyd M, Gatewood L (1976) An influenza simulation model for immunization studies. Am J Epidemiol 103: 152–165PubMedGoogle Scholar
  25. 28.
    Rvachev LA, Longini IMJ (1985) A mathematical model for the global spread of influenza. Math Biosci 75: 3–22CrossRefGoogle Scholar
  26. 29.
    Treanor JJ, Hayden FG (1998) Volunteer challenge studies. In:KG Nicholson, AJ Hay, RG Webster (eds): Textbook of Influenza. Blackwell Science, London, 517–537Google Scholar
  27. 30.
    Carrat F, Sahler C, Rogez S, Leruez-Ville M, Freymuth F, Le GC, Bungener M, Housset B, Nicolas M, Rouzioux C (2002) Influenza burden of illness: Estimates from a national prospective survey of household contacts in France. Arch Intern Med 162: 1842–1848PubMedCrossRefGoogle Scholar
  28. 31.
    Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boelle PY (2004) A Bayesian MCMC approach to study transmission of influenza: Application to household longitudinal data. Stat Med 23: 3469–3487PubMedCrossRefGoogle Scholar
  29. 32.
    Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437: 209–214PubMedCrossRefGoogle Scholar
  30. 33.
    Fraser C, Riley S, Anderson RM, Ferguson NM (2004) Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci USA 101: 6146–6151PubMedCrossRefGoogle Scholar
  31. 34.
    Istituto Nazionale di statistica (2001) 14 ° Censimento Generale della Popolazione e delle Abitazioni ISTATGoogle Scholar
  32. 35.
    Istituto Nazionale di statistica (2006) Statistiche del trasporto aereo-Anno 2003 ISTAT Google Scholar
  33. 36.
    Calfee DP, Peng AW, Cass LM, Lobo M, Hayden FG (1999) Safety and efficacy of intravenous zanamivir in preventing experimental human influenza A virus infection. Antimicrob Agents Chemother 43: 1616–1620PubMedGoogle Scholar
  34. 37.
    Doyle WJ, Skoner DP, Alper CM, Allen G, Moody SA, Seroky JT, Hayden FG (1998) Effect of rimantadine treatment on clinical manifestations and otologic complications in adults experimentally infected with influenza A (H1N1) virus. J Infect Dis 177: 1260–1265PubMedCrossRefGoogle Scholar
  35. 38.
    Fritz RS, Hayden FG, Calfee DP, Cass LM, Peng AW, Alvord WG, Strober W, Straus SE (1999) Nasal cytokine and chemokine responses in experimental influenza A virus infection: Results of a placebo-controlled trial of intravenous zanamivir treatment. J Infect Dis 180: 586–593PubMedCrossRefGoogle Scholar
  36. 39.
    Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE (1998) Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest 101: 643–649PubMedCrossRefGoogle Scholar
  37. 40.
    Hayden FG, Jennings L, Robson R, Schiff G, Jackson H, Rana B, McClelland G, Ipe D, Roberts N, Ward P (2000) Oral oseltamivir in human experimental influenza B infection. Antivir Ther 5: 205–213PubMedGoogle Scholar
  38. 41.
    Hayden FG, Treanor JJ, Fritz RS, Lobo M, Betts RF, Miller M, Kinnersley N, Mills RG, Ward P, Straus SE (1999) Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: Randomized controlled trials for prevention and treatment. JAMA 282: 1240–1246PubMedCrossRefGoogle Scholar
  39. 42.
    Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM (2004) The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda. J Theor Biol 229: 119–126PubMedCrossRefGoogle Scholar
  40. 43.
    Flahault A, Letrait S, Blin P, Hazout S, Menares J, Valleron AJ (1988) Modelling the 1985 influenza epidemic in France. Stat Med 7: 1147–1155PubMedCrossRefGoogle Scholar
  41. 44.
    Ministero della Salute (2006) Piano Nazionale di preparazione e risposta ad una pandemia influenzale (http://www.ministerosalute.it)Google Scholar
  42. 45.
    Colizza V, Barrat A, Barthelemy M, Vespignani A (2006) The modeling of global epidemics: Stochastic dynamics and predictability. Bull Math Biol 68: 1893–1921PubMedCrossRefGoogle Scholar
  43. 46.
    Ministero della Salute (2005) Influenza Vaccination Coverage (http://www.ministerosalute. it/promozione/malattie/malattie.jsp)Google Scholar
  44. 47.
    Longini IM Jr, Halloran ME, Nizam A, Yang Y (2004) Containing pandemic influenza with antiviral agents. Am J Epidemiol 159: 623–633PubMedCrossRefGoogle Scholar
  45. 48.
    Ciofi degli Atti ML, Rizzo C, Bella A, Massari M, Iannelli M, Lunelli A, Pugliese A, Ripoll J, Manfredi P et al (2006) Scenarios of diffusion and control of influenza pandemic in Italy. Rapporti ISTISAN Istituto Superiore di Sanità 33: 1–41Google Scholar
  46. 49.
    Viboud C, Boelle PY, Pakdaman K, Carrat F, Valleron AJ, Flahault A (2004) Influenza epidemics in the United States, France, and Australia, 1972–1997. Emerg Infect Dis 10: 32–39PubMedGoogle Scholar
  47. 50.
    Bella A, De Mei B, Giannitelli S, Rota MC, Salmaso S, Donatelli I, Affinito C, Fabiani C, Fiaccavento S, Frezza F et al (2005) FLU-ISS: Sistema di sorveglianza sentinella dell’influenza basata su medici di medicina generale e pediatri di libera scelta. Rapporto sulla stagione influenzale 2004–2005. Rapporti ISTISAN Istituto Superiore di Sanità 22: 1–79Google Scholar
  48. 51.
    Viboud C, Boelle PY, Cauchemez S, Lavenu A, Valleron AJ, Flahault A, Carrat F (2004) Risk factors of influenza transmission in households. Br J Gen Pract 54: 684–689PubMedGoogle Scholar
  49. 52.
    Daems R, De Giudice G, Rappuoli R (2005) Anticipating crisis: Towards a pandemic flu vaccination strategy through alignment of public health and industrial policy. Vaccine 23: 5732–5742PubMedCrossRefGoogle Scholar
  50. 53.
    Grais RF, Ellis JH, Glass GE (2003) Assessing the impact of airline travel on the geographic spread of pandemic influenza. Eur J Epidemiol 18: 1065–1072PubMedCrossRefGoogle Scholar
  51. 54.
    Grais RF, Ellis JH, Kress A, Glass GE (2004) Modeling the spread of annual influenza epidemics in the U.S.: The potential role of air travel. Health Care Manag Sci 7: 127–134PubMedCrossRefGoogle Scholar
  52. 55.
    Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ (2006) Delaying the international spread of pandemic influenza. PLoS Med 3: e212PubMedCrossRefGoogle Scholar
  53. 56.
    Epstein JM, Goedecke DM, Yu F, Morris RJ, Wagener DK, Bobashev GV (2007) Controlling pandemic flu: The value of international air travel restrictions. PLoS ONE 2: e401PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Caterina Rizzo
    • 1
    • 2
  • Marta Luisa Ciofi degli Atti
    • 1
  1. 1.Istituto Superiore di SanitàRoma
  2. 2.Department of Pharmaco-BiologyUniversity of BariItaly

Personalised recommendations