Molecular genetics of cardiomyopathies and myocarditis

  • Jeffrey A. Towbin
  • Matteo Vatta
Part of the Progress in Inflammation Research book series (PIR)


Cardiomyopathies are major causes of morbidity and mortality and over the past 20 years, limited improvements in outcome have been reported [13]. However, improvement in the understanding of the major forms of cardiomyopathy has occurred over that time, in large part due to advances in genetics and genomics [4, 5]. In addition, new forms of cardiomyopathy have been described and classified over that time frame, mainly due to our improved genetic-based understanding of heart muscle disease. The improved understanding gained in heart muscle disease has also led to understanding of similarities and differences in heart and skeletal muscle and their often overlapping clinical presentations.


Dilate Cardiomyopathy Duchenne Muscular Dystrophy Hypertrophic Cardiomyopathy Fabry Disease Glycogen Storage Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Towbin JA, Bowles NE (2005) Cardiomyopathy. In: McMillian JA, Feigin RA, DeAngelis CD, Jones MD, Jr (eds) Oski’s Pediatrics. Principles and Practice, 4th Edition. Lippincott Williams & Wilkins, Philadelphia. Chapter 283, 1624–1648Google Scholar
  2. 2.
    Abelman WH, Lorrell BH (1989) The challenge of cardiomyopathy. J Am Coll Cardiol 13: 1219Google Scholar
  3. 3.
    Towbin JA (2006) Hypertrophic cardiomyopathy. In: Chang AC, Towbin JA (eds) Heart Failure in Children and Young Adults. From molecular mechanisms to medical and surgical strategies. Saunders Elsevier, Philadelphia, Chapter 20, 278–297Google Scholar
  4. 4.
    Towbin JA, Bowles NE (2002) The failing heart. Nature 415: 227–233PubMedGoogle Scholar
  5. 5.
    Morita H, Seidman CE (2005) Genetic causes of human heart failure. J Clin Invest 115: 518–526PubMedGoogle Scholar
  6. 6.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdis-ciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113: 1807–1816PubMedGoogle Scholar
  7. 7.
    Schwartz SM, Duffy JY, Pearl JM, Nelson DP (2001) Cellular and molecular aspects of myocardial dysfunction. Crit Care Med 29: S214–S219PubMedGoogle Scholar
  8. 8.
    Gregorio CC, Antin PB (2000) To the heart of myofibril assembly. Trends Cell Biol 10: 355–362PubMedGoogle Scholar
  9. 9.
    Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 18: 637–706PubMedGoogle Scholar
  10. 10.
    Vigoreaux JO (1994) The muscle Z band: Lessons in stress management. J Muscle Res Cell Motil 15: 237–255PubMedGoogle Scholar
  11. 11.
    Barth AL, Nathke IS, Nelson WJ (1997) Cadherins, catenins and APC protein; interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9: 683–690PubMedGoogle Scholar
  12. 12.
    Capetanaki Y (2002) Desmin cytoskeleton: A potential regulator of muscle mitochondrial behaviour and function. Trends Cardiovasc Med 12: 339–348PubMedGoogle Scholar
  13. 13.
    Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L (1997) Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Physiol 273: H546–556PubMedGoogle Scholar
  14. 14.
    Straub V, Campbell KP (1997) Muscular dystrophies and the dystrophin-glycoprotein complex. Curr Opin Neurol 10: 168–175PubMedGoogle Scholar
  15. 15.
    Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang ML, Labeit D, Labeit S, Inaagki N, Gregorio CC (2001) Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. J Mol Biol 313: 775–784PubMedGoogle Scholar
  16. 16.
    Kucera JP, Rohr S, Rudy Y (2002) Localization of sodium channels in intercalated disks modulates cardiac conduction. Circ Res 91: 1176–1182PubMedGoogle Scholar
  17. 17.
    Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, Messere J, Cox GF, Lurie PR, Hsu D et al (2006) Incidence, causes, and outcome of dilated cardiomyopathy. JAMA 296: 1867–1876PubMedGoogle Scholar
  18. 18.
    Michels VV, Moll PP, Miller FA, Tajik AJ, Chu JS, Driscoll DJ, Burnett JC, Rodeheffer RJ, Chesebro JH, Tazelaar HD (1992) The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 326: 77–82PubMedGoogle Scholar
  19. 19.
    Berko BA, Swift M (1987) X-linked dilated cardiomyopathy. N Engl J Med 316: 1186–1191PubMedGoogle Scholar
  20. 20.
    Towbin JA, Bowles KR, Bowles NE (1999) Etiologies cardiomyopathy and heart failure. Nat Med 5: 266–267PubMedGoogle Scholar
  21. 21.
    Towbin JA, Hejtmancik JF, Brink P, Gelb B, Zhu XM, Chamberlain JS, McCabe ER, Swift M (1993) X-linked dilated cardiomyopathy (XLCM): Molecular genetic evidence of linkage to the Duchenne muscular dystrophy gene at the Xp21 locus. Circulation 87: 1854–1865PubMedGoogle Scholar
  22. 22.
    Muntoni F, Cau M, Ganau A, Congiu R, Arvedi G, Mateddu A, Marrosu MG, Cicanchetti C, Realdi G, Cao A et al (1993) Brief report: Deletion of the dystrophin muscle-specific promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med 329: 921–925PubMedGoogle Scholar
  23. 23.
    Cox GF, Kunkel LM (1997) Dystrophies and heart disease. Curr Opin Cardiol 12: 329–343PubMedGoogle Scholar
  24. 24.
    Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928PubMedGoogle Scholar
  25. 25.
    Meng H, Leddy JJ, Frank J, Holland P, Tuana BS (1996) The association of cardiac dystrophin with myofibrils/Z-discs regions in cardiac muscle suggests a novel role in the contractile apparatus. J Biol Chem 271: 12364–12371PubMedGoogle Scholar
  26. 26.
    Kaprielian RR, Stevenson S, Rothery SM, Cullen MJ, Severs NJ (2000) Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101: 2586–2594PubMedGoogle Scholar
  27. 27.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50: 509–517PubMedGoogle Scholar
  28. 28.
    Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeny HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90: 3710–3714PubMedGoogle Scholar
  29. 29.
    Campbell KP (1995) Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell 80: 675–679PubMedGoogle Scholar
  30. 30.
    Klietsch R, Ervasti JM, Arnold W, Campbell KP, Jorgensen AO (1993) Dystrophinglycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ Res 72: 349–360PubMedGoogle Scholar
  31. 31.
    Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S (1995) Dystrophinassociated proteins in muscular dystrophy. Hum Mol Genet 4: 1711–1716PubMedGoogle Scholar
  32. 32.
    Emery AE (2002) The muscular dystrophies. Lancet 359: 687–695PubMedGoogle Scholar
  33. 33.
    Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: Old and new players. Nat Rev Mol Cell Biol 7: 762–773PubMedGoogle Scholar
  34. 34.
    Towbin JA (1998) The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 10: 131–139PubMedGoogle Scholar
  35. 35.
    Bowles NE, Bowles KR, Towbin JA (2000) The ‘Final Common Pathway’ hypothesis and inherited cardiovascular disease: The role of cytoskeletal proteins in dilated cardiomyopathy. Herz 25: 168–175PubMedGoogle Scholar
  36. 36.
    Feng J, Yan J, Buzin CH, Towbin JA, Sommer SS (2002) Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 77: 119–126PubMedGoogle Scholar
  37. 37.
    Feng J, Yan J, Buzin CH, Sommer SS, Towbin JA (2002) Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J Am Coll Cardiol 40: 1120–1124PubMedGoogle Scholar
  38. 38.
    Neustein HD, Lurie PR, Dahms B, Takahashi M (1979) An X-linked recessive cardiomyopathy with abnormal mitochondria. Pediatrics 64: 24–29PubMedGoogle Scholar
  39. 39.
    Barth PG, Scholte HR, Berden JA, van der Klei-van Moorsel JM, Luyt-Houwen IE, van’t Veer-Korthof ET, van der Harten JJ, Sobotka-Plojhar MA (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62: 327–355PubMedGoogle Scholar
  40. 40.
    Kelley RI, Cheatham JP, Clark BJ, Nigro MA, Powell BR, Sherwood GW, Sladky JT, Swisher WP (1991) X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 119: 738–747PubMedGoogle Scholar
  41. 41.
    Schlame M, Towbin JA, Heerdt PM, Jehle R, DiMauro S, Blanck TJJ (2002) Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann Neurol 51: 634–637PubMedGoogle Scholar
  42. 42.
    Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D (1996) A novel X-linked gene, G4.5, is responsible for Barth syndrome. Nat Genet 12: 385–389PubMedGoogle Scholar
  43. 43.
    Bleyl SB, Mumford BR, Thompson V, Carey JC, Pysher TJ, Chin TK, Ward K (1997) Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet 61: 868–872PubMedGoogle Scholar
  44. 44.
    Graber HL, Unverferth DV, Baker PB, Ryan JM, Baba N, Wooley CF (1986) Evolution of hereditary cardiac conduction and muscle disorder: A study involving a family with 6 generations affected. Circulation 74: 21–35PubMedGoogle Scholar
  45. 45.
    Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L, Bowles NE, Towbin JA (2000) Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 106: 655–662PubMedGoogle Scholar
  46. 46.
    Karkkainen S, Peuhkurinen K (2007) Genetics of dilated cardiodiomyopathy. Ann Med 32: 91–107Google Scholar
  47. 47.
    Towbin JA, Bowles NE (2006) Dilated cardiomyopathy: A tale of the cytoskeleton and beyond. J Cardiovasc Electrophysiol 17: 919–926PubMedGoogle Scholar
  48. 48.
    Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280: 750–752PubMedGoogle Scholar
  49. 49.
    Kamisago M, Sharma SD, DePalma SR, Kamisago M, Sharma SD, De Palwa SR, Solomon S, Sharma P, McDonogouh B, Smoot L, Mullen MP, Woolf PK, Wigle ED et al (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343: 1688–1696PubMedGoogle Scholar
  50. 50.
    Li D, Tapscott T, Gonzalez O, Burch PE, Quinones MA, Zoghbi WA, Hill R, Bachinski LL, Mann DL, Roberts R (1999) Desmin mutations responsible for idiopathic dilated cardiomyopathy. Circulation 100: 461–464PubMedGoogle Scholar
  51. 51.
    Fatkin D, Graham RM (2002) Molecular mechanisms of inherited cardiomyopathies. Physiol Ref 82: 945–980Google Scholar
  52. 52.
    Ozawa E, Mizumo Y, Hagiwara Y, Sasaoka T, Yoshida M (2005) Molecular and cellular biology of the sarcoglycan complex. Muscle Nerve 32: 563–576PubMedGoogle Scholar
  53. 53.
    Coral-Vazquez R, Cohn RD, Moore SA, Hill JA, Weiss RM, Davisson RL, Straub V, Barresi R, Bansal D, Hrstka RF et al (1999) Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: A novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98: 465–474PubMedGoogle Scholar
  54. 54.
    Wheeler MT, Allikian MJ, Heydemann A, Hadhazy M, Zarnegar S, McNally EM (2004) Smooth muscle cell-extrinsic vascular spasms arise from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. J Clin Invest 113: 668–675PubMedGoogle Scholar
  55. 55.
    Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-Oka T, Hanaoka F (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: An animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA 94: 13873–13878PubMedGoogle Scholar
  56. 56.
    Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM (2002) Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105: 431–437PubMedGoogle Scholar
  57. 57.
    Maeda M, Holder E, Lowes B, Valent S, Bies RD (1997) Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 95: 17–20PubMedGoogle Scholar
  58. 58.
    Chang AN, Potter JD (2005) Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 10: 225–235PubMedGoogle Scholar
  59. 59.
    Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG, Maclennan DH, Seidman JG, Seidman CE (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299: 1410–1413PubMedGoogle Scholar
  60. 60.
    Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S et al (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111: 869–876PubMedGoogle Scholar
  61. 61.
    Murphy RT, Mogensen J, Shaw A, Kubo T, Hughes S, McKenna WJ (2004) Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 363: 371–372PubMedGoogle Scholar
  62. 62.
    Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33: 723–732PubMedGoogle Scholar
  63. 63.
    Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: The role of Z-discs in intracellular signaling and cardiac function. Circ Res 94: 296–305PubMedGoogle Scholar
  64. 64.
    Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W et al (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 11: 943–955Google Scholar
  65. 65.
    Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88: 393–403PubMedGoogle Scholar
  66. 66.
    Zolk O, Caroni P, Bohm M (2000) Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101: 2674–2677PubMedGoogle Scholar
  67. 67.
    Katz AM (2000) Cytoskeletal abnormalities in the failing heart. Out on a LIM? Circulation 101: 2672–2673PubMedGoogle Scholar
  68. 68.
    Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, Knoll G, Shelton GD, Evans S, Chen J (2001) Ablation of cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 155: 605–612PubMedGoogle Scholar
  69. 69.
    Granzier H, Labeit S (2004) The grant protein titin: A major player in myocardial mechanics, signaling, and disease. Circ Res 94: 284–295PubMedGoogle Scholar
  70. 70.
    Gerul B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S et al (2002) Mutations of TTN encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30: 201–204Google Scholar
  71. 71.
    Fatkin D, MacRae C, Sasaki T, Wolff MP, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ, Spudich S, De Girolami U (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 34: 1715–1724Google Scholar
  72. 72.
    Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L (2000) Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101: 473–476PubMedGoogle Scholar
  73. 73.
    Stuurman N, Heins S, Aebi U (1998) Nuclear Iamins: Their structure, assembly and interactions. J Struct Biol 122: 42–66PubMedGoogle Scholar
  74. 74.
    Bonne G, DiBarletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizeberea JA et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21: 285–288PubMedGoogle Scholar
  75. 75.
    Di Barletta R, Ricci E, Galluzzi G, Tonali P, Mora M, Morandi L, Romorini A, Voit T, Orstavik KH, Merlini L et al (2000) Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet 66: 1407–1412Google Scholar
  76. 76.
    Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Vissser M, Schwartz K (2000) Identification of mutations in the gene encoding lamin A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbance (LGMD1B). Hum Mol Genet 9: 1453–1459PubMedGoogle Scholar
  77. 77.
    Decostre V, Ben Yaou R, Bonne G (2005) Laminopathies affecting skeletal and cardiac muscles: Clinical and pathological aspects. Acta Myol 24: 104–109PubMedGoogle Scholar
  78. 78.
    Taylor MR, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM et al (2005) Thymopoietin (laminaassociated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 26: 566–574PubMedGoogle Scholar
  79. 79.
    Badorff C, Lee G-H, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU (1999) Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5: 320–326PubMedGoogle Scholar
  80. 80.
    Xiong D, Lee GH, Badorff C, Dorner A, Lee S, Wolf P, Knowlton KU (2002) Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: A genetic predisposition to viral heart disease. Nat Med 8: 872–877PubMedGoogle Scholar
  81. 81.
    Vatta M, Stetson SJ, Perez-Verdra A, Entman ML, Noon GP, Torre-Amione G, Bowles NE, Towbin JA (2000) Molecular remodeling of dystrophin in patients with end-stage cardiomyopathies and reversal for patients on assist device therapy. Lancet 359: 936–941Google Scholar
  82. 82.
    Vatta M, Stetson SJ, Jimenez S, Entman ML, Noon GP, Bowles NE, Towbin JA, Torre-Amione G (2004) Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow-type ventricular assist devices. J Am Coll Cardiol 43: 811–817PubMedGoogle Scholar
  83. 83.
    Maron BJ (2002) Hypertrophic cardiomyopathy: A systemic review. JAMA 287: 1308–1320PubMedGoogle Scholar
  84. 84.
    Elliott P, McKenna WJ (2004) Hypertrophic cardiomyopathy. Lancet 363: 188–189Google Scholar
  85. 85.
    Colan SD, Lipshultz SE, Lowe AM, Sleeper LA, Messere J, Cox GF, Lurie PR, Orav EJ, Towbin JA (2007) Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: Findings from the Pediatric Cardiomyopathy Registry. Circulation 115: 773–781PubMedGoogle Scholar
  86. 86.
    McKenna WJ, Behr ER (2002) Hypertrophic cardiomyopathy: Management, risk stratification, and prevention of sudden death. Heart 87: 169–176PubMedGoogle Scholar
  87. 87.
    Frenneaux MP (2004) Assessing the risk of sudden cardiac death in a patient with hypertrophic cardiomyopathy. Heart 90: 570–575PubMedGoogle Scholar
  88. 88.
    Maron BJ, Carney KP, Lever HM, Lewis JF, Barac I, Casey SA, Sherrid MV (2003) Relationship of race to sudden cardiac death in competitive athletes with hypertrophic cardiomyopathy. J Am Coll Cardiol 41: 974–980PubMedGoogle Scholar
  89. 89.
    Maron BJ (2000) Hypertrophic cardiomyopathy and sudden death: New perspective on risk stratification and prevention with the implantable cardioverter-defibrillator. Eur Heart J 21: 1979–1983PubMedGoogle Scholar
  90. 90.
    Spirito P, Maron BJ, Bonow RO, Epstein SE (1987) Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilation in hypertrophic cardiomyopathy. Am J Cardiol 60: 123–139PubMedGoogle Scholar
  91. 91.
    Aurigemma GP, Gaasch WH (2004) Diastolic heart failure. N Engl J Med 351: 1097–1105PubMedGoogle Scholar
  92. 92.
    Gaasch WH, Zile MR (2004) Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med 55: 373–394PubMedGoogle Scholar
  93. 93.
    Towbin JA, Lipshultz SE (1999) Genetics of neonatal cardiomyopathy. Curr Opin Cardiol 14: 250–262PubMedGoogle Scholar
  94. 94.
    Vulpian A (1868) Contribution à l’étude des rétrécissements de l’orifice ventriculoaortique. Arch Physiol 3: 220–222Google Scholar
  95. 95.
    Watkins H (2003) Genetic clues to disease pathways in hypertrophic and dilated cardiomyopathies. Circulation 107: 1344–1346PubMedGoogle Scholar
  96. 96.
    Jarcho JA, McKenna W, Pare JA, Solomon SD, Holcombe RF, Dickie S, Levi T, Donis-Keller H, Seidman JG, Seidman CE (1989) Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 321: 1372–1378PubMedGoogle Scholar
  97. 97.
    Solomon SD, Jarcho JA, McKenna WJ, Geisterfer-Lowrance A, Germain R, Salerni R, Seidman JG, Seidman CE (1990) Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease. J Clin Invest 86: 993–999PubMedGoogle Scholar
  98. 98.
    Watkins H, MacRae C, Thierfelder L, Chou YH, Frenneaux M, McKenna W, Seidman JG, Seidman CE (1993) A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Genet 3: 333–337PubMedGoogle Scholar
  99. 99.
    Thierfelder L, MacRae C, Watkins H, Tomfohrde J, Williams M, McKenna W, Bohm K, Noeske G, Schlepper M, Bowcock A (1993) A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci USA 90: 6270–6274PubMedGoogle Scholar
  100. 100.
    Carrier L, Hengstenberg C, Beckmann JS, Guicheney P, Dufour C, Bercovici J, Dausse E, Berebbi-Bertrand I, Wisnewsky C, Pulvenis D (1993) Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat Genet 4: 311–313PubMedGoogle Scholar
  101. 101.
    MacRae CA, Ghaisas N, Kass S, Donnelly S, Basson CT, Watkins HC, Anan R, Thierfelder LH, McGarry K, Rowland E (1995) Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White Syndrome maps to a locus on chromosome 7q3. J Clin Invest 96: 1216–1220PubMedGoogle Scholar
  102. 102.
    Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND (1996) Mutation in either the essential regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69PubMedGoogle Scholar
  103. 103.
    Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T et al (1997) Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 16: 379–382PubMedGoogle Scholar
  104. 104.
    Mogensen J, Klausen IC, Pederson AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD (1999) α-Cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103: R39–R43PubMedGoogle Scholar
  105. 105.
    Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A (1999) Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochem Biophys Res Commun 2625: 411–417Google Scholar
  106. 106.
    Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF et al (2003) Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107: 1390–1395PubMedGoogle Scholar
  107. 107.
    Mohiddin SA, Ahmed ZM, Griffith AJ, Tripodi D, Friedman TB, Fananapazir L, Morrell RJ (2004) Novel association of hypertrophic cardiomyopathy, sensorineural deafness and a mutation in unconventional myosin VI (MYO6). J Med Genet 41: 309–314PubMedGoogle Scholar
  108. 108.
    Hayashi T, Armimura T, Ueda K, Shibata H, Hohda S, Takahashi M, Hori H, Koga Y, Oka N, Imaizumi T et al (2004) Identification and functional and of caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 313: 178–184PubMedGoogle Scholar
  109. 109.
    Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy from mutation identification to mechanistic paradigms. Cell 108: 557–567Google Scholar
  110. 110.
    Towbin JA, Bowles NE (2002) The failing heart. Nature 415: 227–233PubMedGoogle Scholar
  111. 111.
    Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev 76: 371–423PubMedGoogle Scholar
  112. 112.
    Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, Ahmad F, Lozado R, Shah G, Fananapazir L et al (2001) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344: 1823–1831PubMedGoogle Scholar
  113. 113.
    Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: Evidence for a central role of energy compromise in disease pathogenesis. Hum Mol Genet 10: 1215–1220PubMedGoogle Scholar
  114. 114.
    Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, Kanter RJ, McGarry K, Seidman JG, Seigman CE (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 107: 357–362Google Scholar
  115. 115.
    Blair E, Redwood C, de Jesus Oliveira M, Moolman-Smook JC, Brink P, Corfield VA, Ostman-Smith I, Watkins H (2002) Mutations of the light meromyosin domain of the β-myosin heavy chain rod in hypertrophic cardiomyopathy. Circ Res 90: 263–269PubMedGoogle Scholar
  116. 116.
    Hofmann PA, Hartzell HC, Moss RL (1991) Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97: 1141–1163PubMedGoogle Scholar
  117. 117.
    Lees-Miller JP, Helfman DM (1991) The molecular basis for tropomyosin isoform diversity. Bioessays 13: 429–437PubMedGoogle Scholar
  118. 118.
    Mesnard L, Logeart D, Taviaux S, Diriong S, Mercadier JJ, Samson F (1995) Human cardiac troponin T: Cloning and expression of new isoforms in the normal and failing heart. Circ Res 76: 687–692PubMedGoogle Scholar
  119. 119.
    Townsend P, Barton P, Yacoub M, Farza H (1995) Molecular cloning of human cardiac troponin T isoforms: Expression in developing and failing heart. J Mol Cell Cardiol 27: 2223–2236PubMedGoogle Scholar
  120. 120.
    Hunkeler NM, Kullman J, Murphy AM (1991) Troponin I isoform expression in human heart. Circ Res 69: 1409–1414PubMedGoogle Scholar
  121. 121.
    Theis JL, Bos JM, Bartleson VB, Will ML, Binder J, Vatta M, Towbin JA, Gersh BJ, Ommen SR, Ackerman MJ (2006) Echocardiograpy-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun 351: 896–902PubMedGoogle Scholar
  122. 122.
    Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, Roberts R, Willerson JT, Marian AJ (2007) Myozenin-2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 100: 766–768PubMedGoogle Scholar
  123. 123.
    Watkins H, Rosenzweig T, Hwang DS, Levi T, McKenna W, Seidman CE, Seidman JG (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 326: 1108–1114PubMedGoogle Scholar
  124. 124.
    Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman C, Brink PA, Watkins H (1997) Sudden death due to troponin T mutations. J Am Coll Cardiol 29: 549–555PubMedGoogle Scholar
  125. 125.
    Nakajima-Taniguchi C, Matsui H, Fujio Y, Nagata S, Kishimoto T, Yamauchi-Takihara K (1997) Novel missense mutation in cardiac troponin T gene found in Japanese patient with hypertrophic cardiomyopathy. J Mol Cell Cardiol 29: 839–843PubMedGoogle Scholar
  126. 126.
    Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J (1995) Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet 11: 438–440PubMedGoogle Scholar
  127. 127.
    Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE (1995) Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 11: 434–437PubMedGoogle Scholar
  128. 128.
    Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ et al (1998) Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 338: 1248–1257PubMedGoogle Scholar
  129. 129.
    Charron P, Dubourg O, Desnos M, Bennaceur M, Carrier L, Camproux AC, Isnard R, Hagege A, Langlard JM, Bonne G et al (1998) Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to cardiac myosin-binding protein C gene. Circulation 97: 2230–2236PubMedGoogle Scholar
  130. 130.
    Van Driest SL, Ackerman MJ, Ommen SR, Shakur R, Will ML, Nishimura RA, Tajik AJ, Gersh BJ (2002) Prevalence and severity of ‘benign’ mutations in the β-myosin heavy chain, cardiac troponin T, and α-tropomyosin genes in hypertrophic cardiomyopathy. Circulation 106: 3085–3090PubMedGoogle Scholar
  131. 131.
    Yoneya K, Okamoto H, Machida M, Onozuka H, Noguchi M, Mikami T, Kawaguchi H, Murakami M, Uede T, Kitabatake A (1995) Angiotensin-converting enzyme gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am Heart J 130: 1089–1093PubMedGoogle Scholar
  132. 132.
    Tesson F, Dufour C, Moolman JC, Carrier L, al-Mahdawi S, Chojnowska L, Dubourg O, Soubrier E, Brink P, Komajda M et al (1997) The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 29: 831–838PubMedGoogle Scholar
  133. 133.
    Ortlepp JR, Vosberg HP, Reith S, Ohme F, Mahon NG, Schroder D, Klues HG, Hanrath P, McKenna WJ (2002) Genetic polymorphisms in the rennin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: A study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 87: 270–275PubMedGoogle Scholar
  134. 134.
    Doiuchi J, Hamada M, Ito T, Kokubu T (1987) Comparative effects of calcium-channel blockers and beta-adrenergic blocker on early diastolic time intervals and A-wave ratio in patients with hypertrophic cardiomyopathy. Clin Cardiol 10: 26–30PubMedGoogle Scholar
  135. 135.
    Lorell BH (1985) Use of calcium channel blockers in hypertrophic cardiomyopathy. Am J Med 78: 43–54PubMedGoogle Scholar
  136. 136.
    Moran AM, Colan SD (1998) Verapamil therapy in infants with hypertrophic cardiomyopathy. Cardiol Young 8: 310–319PubMedGoogle Scholar
  137. 137.
    Nagueh SF, Ommen SR, Lakkis NM, Killip D, Zoghbi WA, Schaff HV, Danielson GK, Quinones MA, Tajik AJ, Spencer WH (2001) Comparison of ethanol septal reduction therapy with surgical myectomy for the treatment of hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 38: 1701–1706PubMedGoogle Scholar
  138. 138.
    Maron BJ, Dearani JA, Ommen SR, Maron ML, Schaff HV, Gersh BJ, Nishimura RA (2004) The case for surgery in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 44: 2043–2053Google Scholar
  139. 139.
    O’Rourke RA (1999) Cardiac pacing. An alternative treatment for selected patients with hypertrophic cardiomyopathy and adjunctive therapy for certain patients with dilated cardiomyopathy. Circulation 100: 786–788PubMedGoogle Scholar
  140. 140.
    Maron BJ (1996) Appraisal of dual-chamber pacing therapy in hypertrophic cardiomyopathy: Too soon for a rush to judgment? J Am Coll Cardiol 27: 431–432PubMedGoogle Scholar
  141. 141.
    Begley D, Mohiddin S, Fananapazir L (2001) Dual chamber pacemaker therapy for mid-cavity obstructive hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 24: 1639–1644PubMedGoogle Scholar
  142. 142.
    Chang SM, Lakkis NM, Franklin J, Spencer WH 3rd, Nagueh SF (2004) Predictors of outcome after alcohol septal ablation therapy in patients with hypertrophic obstructive cardiomyopathy. Circulation 109: 824–827PubMedGoogle Scholar
  143. 143.
    Nielsen CD, Killip D, Spencer WH 3rd (2003) Nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy: Short-term results in 50 consecutive procedures. Clin Cardiol 26: 275–279PubMedGoogle Scholar
  144. 144.
    Park TH, Lakkis NM, Middleton KJ, Franklin J, Zoghbi WA, Quinones MA, Spencer WH 3rd, Nagueh SF (2002) Acute effect of nonsurgical septal reduction therapy on regional left ventricular asynchrony in patients with hypertrophic obstructive cardiomyopathy. Circulation 106: 412–415PubMedGoogle Scholar
  145. 145.
    Hess OM, Sigwart U (2004) New treatment strategies for hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 44: 2054–2055PubMedGoogle Scholar
  146. 146.
    Cable WJ, Kolodny EH, Adams RD (1982) Fabry disease: Impaired autonomic function. Neurology 32: 498–502PubMedGoogle Scholar
  147. 147.
    Sugie K, Yamamoto A, Murayama K, Oh SJ, Takahashi M, Mora M, Riggs JE, Colomer J, Iturriaga C, Meloni A et al (2002) Clinicopathological features of genetically confirmed Danon disease. Neurology 58: 1773–1778PubMedGoogle Scholar
  148. 148.
    Yang Z, McMahon CJ, Smith LR, Bersola J, Adesina AM, Breinholt JP, Kearney DL, Dreyer WJ, Denfield SW, Price JF et al (2005) Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation 13: 1612–1617Google Scholar
  149. 149.
    Hers HG, van Hoof F, de Barsy T (1989) Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease, 6th Ed. McGraw-Hill, New York, 425–452Google Scholar
  150. 150.
    Towbin JA (1993) Molecular genetic aspects of cardiomyopathy. Biochem Med Metab Biol 49: 283–320Google Scholar
  151. 151.
    D’Ancona GG, Wurm J, Croce CM (1979) Genetics of type II glycogenosis: Assignment of the human gene for acid α-glucosidase to chromosome 17. Proc Natl Acad Sci USA 76: 4526–4529PubMedGoogle Scholar
  152. 152.
    Beratis NG, LaBadie GU, Hirschhorn K (1983) Genetic heterogeneity in acid α-glucosidase deficiency. Am J Hum Genet 35: 21–33PubMedGoogle Scholar
  153. 153.
    Zhong N, Martiniuk F, Tzall S, Hirschhorn R (1991) Identification of a missense mutation in one allele of a patient with Pompe disease and use of endonuclease digestion of PCR-amplified RNA to demonstrate lack of mRNA expression from the second allele. Am J Hum Genet 49: 635–645PubMedGoogle Scholar
  154. 154.
    Raben N, Danon M, Gilbert AL, Dwivedi S, Collins B, Thurberg BL, Mattaliano RJ, Nagaraju K, Plotz PH (2003) Enzyme replacement therapy in the mouse model of Pompe disease. Mol Genet Metab 80: 159–169PubMedGoogle Scholar
  155. 155.
    Masson C, Cisse I, Simon V, Insalaco P, Audran M (2004) Fabry disease: A review. Joint Bone Spine 71: 381–383PubMedGoogle Scholar
  156. 156.
    Colucci WS, Lorell BH, Schoen FJ, Warhol MJ, Grossman W (1982) Hypertrophic obstructive cardiomyopathy due to Fabry’s disease. N Engl J Med 307: 926–928PubMedGoogle Scholar
  157. 157.
    Becker AE, Schoorl R, Balk AG, van der Heide RM (1975) Cardiac manifestations of Fabry’s disease: Report of a case with mitral insufficiency and electrocardiographic evidence of myocardial infarction. Am J Cardiol 36: 829–835PubMedGoogle Scholar
  158. 158.
    Goldman ME, Cantor R, Schwartz MF, Baker M, Desnick RJ (1986) Echocardiographic abnormalities and disease severity in Fabry’s disease. J Am Coll Cardiol 7: 1157–1161PubMedGoogle Scholar
  159. 159.
    Broadbent JC, Edwards WD, Gordon H, Hartzler GO, Krawisz JE (1981) Fabry cardiomyopathy in the female confirmed by endomyocardial biopsy. Mayo Clin Proc 56: 623–628PubMedGoogle Scholar
  160. 160.
    Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ (1986) Human alpha galactosidase A: Nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci USA 83: 4859–4863PubMedGoogle Scholar
  161. 161.
    Eng CM, Desnick RJ (1994) Molecular basis of Fabry disease. Mutations and polymorphisms in the human α-galactosidase A gene. Hum Mutat 3: 103–111PubMedGoogle Scholar
  162. 162.
    Okumiya T, Ishii S, Kase R, Sakuraba H, Suzuki Y (1995) α-Galactosidase gene mutations in Fabry disease: Heterogeneous expressions of mutant enzyme proteins. Hum Genet 95: 557–561PubMedGoogle Scholar
  163. 163.
    Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M, Yoshida A, Kuriyama M, Hayashibe H, Sakuraba H (1995) An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 333: 288–293PubMedGoogle Scholar
  164. 164.
    Linhart A, Palecek T, Bultas J, Ferguson JJ, Hrudova J, Karetova D, Zeman J, Ledvinova J, Poupetova H, Elleder M, Aschermann M (2000) New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J 139: 1101–1108PubMedGoogle Scholar
  165. 165.
    Sachdev B, Takenaka T, Teraguchih H, Tei C, Lee P, McKenna WJ, Elliott PM (2002) Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105: 1407–1411PubMedGoogle Scholar
  166. 166.
    Danon MJ, Oh SJ, DiMauro S, Manaligod JR, Eastwood A, Naidu S, Schliselfeld LH (1981) Lysosomal glycogen storage disease with normal acid maltase. Neurology 31: 51–57PubMedGoogle Scholar
  167. 167.
    Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y (2000) Primary LAMP-2 deficiency causes X-linked vascular cardiomyopathy and myopathy (Danon disease). Nature 406: 906–909PubMedGoogle Scholar
  168. 168.
    Charron P, Villard E, Sebillon P, Laforet P, Maisonobe T, Dubosca-Bidot L, Romero N, Drouin-Garraud V, Frebourg T, Richard P et al (2004) Danon’s disease as a cause of hypertrophic cardiomyopathy: A systematic survey. Heart 90: 842–846PubMedGoogle Scholar
  169. 169.
    Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMPactivated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346: 659–669PubMedGoogle Scholar
  170. 170.
    Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA (1999) Dealing with energy demand: The AMP-activated protein kinase. Trends Biochem Sci 24: 22–25PubMedGoogle Scholar
  171. 171.
    Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez-Atayde AR, Sawyer DB, Walter M, Li GH, Burgon PG, Maguire CT, Stapleton D et al (2003) Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 107: 2850–2856PubMedGoogle Scholar
  172. 172.
    Attardi G (1996) The elucidation of the human mitochondrial genome: A historical perspective. BioEssays 5: 34–39Google Scholar
  173. 173.
    Wallace DC, Zheng X, Lott MT, Shoffner JM, Hodge JA, Kelley RI, Epstein CM, Hopkins LC (1988) Familial mitochondrial encephalomyopathy (MERRF): Genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55: 601–610PubMedGoogle Scholar
  174. 174.
    Wallace DC (1989) Mitochondrial DNA mutation and neuromuscular disease. Trends Genet 5: 9–13PubMedGoogle Scholar
  175. 175.
    Clarke A (1990) Mitochondrial genome: Defects, disease, and evolution. J Med Genet 27: 451–456PubMedGoogle Scholar
  176. 176.
    Grivell LA (1989) Small, beautiful and essential. Nature 341: 569–571PubMedGoogle Scholar
  177. 177.
    Anderson S, Banker AT, Barrell BG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465PubMedGoogle Scholar
  178. 178.
    Petty RKH, Harding AE, Morgan-Hughes JA (1986) The clinical features of mitochondrial myopathy. Brain 109: 915–938PubMedGoogle Scholar
  179. 179.
    Mariotti C, Tiranti V, Carrara F, Dallapiccola B, DiDonato S, Zeviani M (1994) Defective respiratory capacity and mitochondrial protein synthesis in transformant cybrids harboring the tRNALeu(UUR) mutation associated with maternally inherited myopathy and cardiomyopathy. J Clin Invest 93: 1102–1107PubMedGoogle Scholar
  180. 180.
    Vogel H (2001) Mitochondrial myopathies and the role of the pathologist in the molecular era. J Neuropathol Exp Neurol 60: 217–227PubMedGoogle Scholar
  181. 181.
    Capaldi RA, Halphen DG, Zhang YZ, Yanamura W (1988) Complexity and tissue specificity of the mitochondrial respiratory chain. J Bioenerg Biomembr 20: 291–311PubMedGoogle Scholar
  182. 182.
    Ozawa T, Tanaka M, Sugiyama S, Hattori K, Ito T, Oho K, Takahashi A, Sato W, Takada G, Mayumi B (1990) Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochem Biophys Res Commun 170: 830–836PubMedGoogle Scholar
  183. 183.
    Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, Ware SM, Hunter JV, Fernbach SD, Vladutiu GD et al (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114: 925–931PubMedGoogle Scholar
  184. 184.
    Channer KD, Channer JL, Campbell MJ, Rees JR (1988) Cardiomyopathy in Kearns-Sayre syndrome. Br Heart J 59: 486–490PubMedGoogle Scholar
  185. 185.
    Poulton J, Deadman ME, Ramacharan S, Gardiner RM (1991) Germ-line deletions of mtDNA in mitochondrial myopathy. Am J Hum Genet 48: 649–653PubMedGoogle Scholar
  186. 186.
    Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S (1989) Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med 320: 1293–1299PubMedGoogle Scholar
  187. 187.
    Moraes CT, Schon EA, DiMauro S, Miranda AF (1989) Heteroplasmy of mitochondrial genomes in clonal cultures from patients with Kearns-Sayre syndrome. Biochem Biopsy Res Commun 160: 765–771Google Scholar
  188. 188.
    Suomalainen A, Kollmann P, Octave J-N, Soderlund H, Syvanen AC (1993) Quantification of mitochondrial DNA carrying tRNA8344Lys point mutation in myoclonus epilepsy and ragged-red fiber disease. Eur J Hum Genet 1: 88–95PubMedGoogle Scholar
  189. 189.
    Tanno Y, Yoneda M, Nonaka I, Tanaka K, Miyatake T, Tsuji S (1991) Quantitation of mitochondrial DNA carrying tRANLys mutation in MERRF patients. Biochem Biophys Res Commun 179: 880–885PubMedGoogle Scholar
  190. 190.
    Shoffner JM, Lott MI, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61: 931–937PubMedGoogle Scholar
  191. 191.
    Nakamura M, Nakano S, Goto Y, Ozawa M, Nagahama Y, Fukuyama H, Akiguchi I, Kaji R, Kimura J (1995) A novel point mutation in the mitochondrial tRNASer(UCN) gene detected in a family with MERFF/MELAS overlap syndrome. Biochem Biophys Res Commun 214: 86–93PubMedGoogle Scholar
  192. 192.
    Silvestri G, Moraes CT, Shanske S, Oh SJ, DiMauro S (1992) A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51: 1213–1217PubMedGoogle Scholar
  193. 193.
    Fukuhara N (1995) Clinicopathologic features of MERRF. Muscle Nerve 3: 590–594Google Scholar
  194. 194.
    Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, Craigen WJ, Wu J, El Said H, Bezold LI et al (2003) Clinical characterization of left ventricular noncompaction in children. tA relatively common form of cardiomyopathy. Circulation 108: 2672–2678PubMedGoogle Scholar
  195. 195.
    Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82: 507–513PubMedGoogle Scholar
  196. 196.
    Stollberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90: 899–902PubMedGoogle Scholar
  197. 197.
    Stollberger C, Finsterer J (2004) Left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr 17: 91–100PubMedGoogle Scholar
  198. 198.
    Ichida F, Hamamichi Y, Miyawaki T, Ono Y, Kamiya T, Akagi T, Hamada H, Hirose O, Isobe T, Yamada K et al (1999) Clinical features of isolated noncompaction of the ventricular myocardium: Long-term clinical course, hemodynamic properties and genetic background. J Am Coll Cardiol 34: 233–240PubMedGoogle Scholar
  199. 199.
    Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA (2001) Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103: 1256–1263PubMedGoogle Scholar
  200. 200.
    Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q et al (2003) Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 42: 2014–2027PubMedGoogle Scholar
  201. 201.
    Wynn J, Braunwald E (1997) The cardiomyopathies and myocarditides. In: Braunwald E (ed) Heart disease: A textbook of cardiovascular medicine. WB Saunders, Philadelphia, 1404–1463Google Scholar
  202. 202.
    Berkovich S, Rodriguez-Torres R, Lin JS (1968) Virologic studies in children with acute myocarditis. Am J Dis Child 115: 207–221PubMedGoogle Scholar
  203. 203.
    Dec GW, Palacios IF, Fallon JT, Aretz HT, Mills J, Lee DC, Johnson RA (1985) Active myocarditis in the spectrum of acute dilated cardiomyopathies: Clinical features, histologic correlates, and clinical outcome. N Engl J Med 312: 885–890PubMedGoogle Scholar
  204. 204.
    Bowles NE, Bowles KR, Towbin JA (2005) Viral genome detection and outcome in myocarditis. Heart Fail Clin 1: 407–417PubMedGoogle Scholar
  205. 205.
    Martin AB, Webber S, Fricker FJ, Jaffe R, Demmler G, Kearney D, Zhang YH, Bodurtha J, Gelb B, Ni J et al (1994) Acute myocarditis: Rapid diagnosis by PCR in children. Circulation 90: 330–333PubMedGoogle Scholar
  206. 206.
    Bowles NE, Towbin JA (1998) Molecular aspects of myocarditis. Curr Opin Cardiol 13: 179–184PubMedGoogle Scholar
  207. 207.
    Woodruff JF (1980) Viral myocarditis: A review. Am J Pathol 101: 427–484Google Scholar
  208. 208.
    Hirschman ZS, Hammer SG (1974) Coxsackie virus myopericarditis: A microbiological and clinical review. Am J Cardiol 34: 224–232PubMedGoogle Scholar
  209. 209.
    Schowengerdt KO, Ni J, Denfield SW, Gajarski RJ, Bowles NE, Rosenthal G, Kearney DL, Price JK, Rogers BB, Schauer GM et al (1997) Parvovirus B19 infection as a cause of myocarditis and cardiac allograft rejection: Diagnosis using the polymerase chain reaction (PCR). Circulation 96: 3549–3554PubMedGoogle Scholar
  210. 210.
    Francalanci P, Chance JL, Vatta M, Jimenez S, Li H, Towbin JA, Bowles NE (2004) Cardiotropic viruses in the myocardium of children with end-stage heart disease. J Heart Lung Transplant 23: 1046–1052PubMedGoogle Scholar
  211. 211.
    Maisch B, Ristic AD, Portig I, Pankuweit S (2003) Human viral cardiomyopathy. Front Biosci 8: s39–67Google Scholar
  212. 212.
    Wang X, Zhang G, Liu F, Han M, Xu D, Zang Y (2004) Prevalence of human parvovirus B19 DNA in cardiac tissues of patients with congenital heart diseases indicated by nested PCR and in situ hybridization. J Clin Virol 31: 20–24PubMedGoogle Scholar
  213. 213.
    Pankuweit S, Lamparter S, Schoppet M, Maisch B (2004) Parvovirus B19 genome in endomyocardial biopsy specimen. Circulation 109: e179PubMedGoogle Scholar
  214. 214.
    Perez Pulido S (1984) Acute and subacute myocarditis. Cardiovasc Rev Rep 5: 912–926Google Scholar
  215. 215.
    Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R, Hare J, Bricker JT, Bowles KR, Towbin JA (2003) Detection of viruses in myocardial tissues by polymerase chain reaction, evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 42: 466–472PubMedGoogle Scholar
  216. 216.
    Proby CM, Hackett S, Gupta S, Cox TM (1986) Acute myopericarditis in influenza A infection. QJ Med 60: 887–892Google Scholar
  217. 217.
    Schonian U, Crombach M, Maser S, Maisch B (1995) Cytomegalovirus associated heart muscle disease. Eur Heart J 16 (Supp 10): 46–49PubMedGoogle Scholar
  218. 218.
    Lowry PJ, Thompson RA, Littler WA (1983) Humoral immunity in cardiomyopathy. Br Heart J 50: 390–394PubMedGoogle Scholar
  219. 219.
    Matsumori A (2006) Role of hepatitis C virus in cardiomyopathies. Ernst Schering Res Found Workshop 55: 99–120PubMedGoogle Scholar
  220. 220.
    Matsumori A (2005) Hepatitis C virus infection and cardiomyopathies. Circ Res 96: 144–147PubMedGoogle Scholar
  221. 221.
    Okabe M, Fukuda K, Arakawa K, Kikuchi M (1997) Chronic variant myocarditis associated with hepatitis C virus infection. Circulation 96: 22–24PubMedGoogle Scholar
  222. 222.
    Ainger LE, Lawyer NG, Fitch CW (1966) Neonatal rubella myocarditis. Br Heart J 28: 691–697PubMedGoogle Scholar
  223. 223.
    Lorber A, Zonis A, Maisuls E, Dembo L, Palant A, Iancu TC (1988) The scale of myocardial involvement in varicella myocarditis. Int J Cardiol 20: 257–262PubMedGoogle Scholar
  224. 224.
    Chaudary S, Jaski BE (1989) Fulminant mumps myocarditis. Ann Intern Med 110: 569–570PubMedGoogle Scholar
  225. 225.
    Frishman W, Kraus ME, Zabkar J, Brooks V, Alonso D, Dixon LM (1977) Infectious mononucleosis and fatal myocarditis. Chest 72: 535–538PubMedGoogle Scholar
  226. 226.
    Barbaro G, Di Lorenzo G, Grisorio B, Barbarini G for the Gruppo Italiano per Lo Studio Cardiologico dei Pazienti Affeti da AIDS (1998) Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV-positive patients. N Engl J Med 339: 1093–1099PubMedGoogle Scholar
  227. 227.
    Puchkov GF, Minkovich BM (1972) A case of respiratory syncytial infection in a child by interstitial myocarditis with lethal outcome. Arkh Patol 34: 70–73PubMedGoogle Scholar
  228. 228.
    Vargo TA, Singer DB, Gillette PC, Fernbach DJ (1977) Myocarditis due to visceral larva migrans. J Pediatr 90: 322–323PubMedGoogle Scholar
  229. 229.
    Poltera AA, Cox JN, Owor R (1976) Pancarditis affecting the conducting system and all valves in human African trypanosomiasis. Br Heart J 38: 827–837PubMedGoogle Scholar
  230. 230.
    Marsden PD (1971) South American trypanosomiasis (Chagas’ disease). Int Rev Trop Med 4: 97–121PubMedGoogle Scholar
  231. 231.
    Leak D, Meghji M (1979) Toxoplasmic infection in cardiac disease. Am J Cardiol 43: 841–849PubMedGoogle Scholar
  232. 232.
    Bessoudo R, Marrie TJ, Smith ER (1981) Cardiac involvement in trichinosis. Chest 79: 698–699PubMedGoogle Scholar
  233. 233.
    Karjalainen J (1989) Streptococcal tonsillitis and acute nonrheumatic myopericarditis. Chest 95: 359–363PubMedGoogle Scholar
  234. 234.
    Braiser AR, Macklis JD, Vaughan D, Warner L, Kirshenbaum JM (1987) Myopericarditis as an initial presentation of meningococcemia. Am J Med 82: 641–644Google Scholar
  235. 235.
    Gross D, Willens H, Zeldis SM (1981) Myocarditis in Legionnaires’ disease. Chest 79: 232–234PubMedGoogle Scholar
  236. 236.
    Lewes D, Rainford DJ, Lane WF (1974) Symptomless myocarditis and myalgia in viral and Myocoplasma pneumoniae infections. Br Heart J 36: 924–932PubMedGoogle Scholar
  237. 237.
    Marin-Garcia J, Barrett FF (1983) Myocardial function in Rocky Mountain spotted fever: Echocardiographic assessment. Am J Cardiol 51: 341–343PubMedGoogle Scholar
  238. 238.
    McAlister HF, Klemontowicz PT, Andrews C, Fisher JD, Feld M, Furman S (1989) Lyme carditis: An important cause of reversible heart block. Ann Intern Med 110: 339–345PubMedGoogle Scholar
  239. 239.
    Horn H, Saphir O (1935) The involvement of the myocardium in tuberculosis. Annu Rev Tuberc 32: 492–506Google Scholar
  240. 240.
    Ferrans VJ, Rodriguez ER (1985) Cardiovascular lesions in collagen-vascular diseases. Heart Vessels 1: 256–261Google Scholar
  241. 241.
    Lash AD, Wittman AL, Quismorio FP Jr (1986) Myocarditis in mixed connective tissue disease: Clinical and pathologic study of three cases and review of the literature. Semin Arthritis Rheum 15: 288–296PubMedGoogle Scholar
  242. 242.
    Kerr LD, Spiera H (1993) Myocarditis as a complication in scleroderma patients with myositis. Clin Cardiol 16: 895–899PubMedGoogle Scholar
  243. 243.
    Ni J, Bowles NE, Kim Y-H, Demmler G, Kearney D, Bricker JT, Towbin JA (1997) Viral infection of the myocardium in endocardial fibroelastosis: Molecular evidence for the role of mumps virus as an etiological agent. Circulation 95: 133–139PubMedGoogle Scholar
  244. 244.
    Yamamoto LG (2003) Kawasaki disease. Pediatr Emerg Care 19: 422–424PubMedGoogle Scholar
  245. 245.
    Okura Y, Dec GW, Hare JM, Kodama M, Berry GJ, Tazelaar HD, Bailey KR, Cooper LT (2003) A clinical and histopathologic comparison of cardiac sarcoidosis and idiopathic giant cell myocarditis. J Am Coll Cardiol 41: 322–329PubMedGoogle Scholar
  246. 246.
    Sole MJ, Liu P (1993) Viral myocarditis: A paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J Am Coll Cardiol 22: 99A–105APubMedGoogle Scholar
  247. 247.
    Hudson REB (1965) Myocardial involvement (myocarditis) in infections, infestation and drug therapy. Cardiovasc Pathol 1: 782–854Google Scholar
  248. 248.
    Mason JW, O’Connell JB, Herskowitz A, Rose NR, McManus BM, Billingham ME, Moon TE and the Myocarditis Treatment Trial Investigators (1995) A clinical trial of immunosuppressive therapy for myocarditis. N Engl J Med 333: 269–275PubMedGoogle Scholar
  249. 249.
    Grist NR, Reid D (1988) General pathogenicity and epidemiology. In: Bendinelli M, Friedman H (eds) Coxsackieviruses: A general update. Plenum, New York, 241–252Google Scholar
  250. 250.
    Van den Veyver IB, Ni J, Bowles N, Carpenter RJ, Weiner CP, Yankowitz J, Moise KJ, Henderson J, Towbin JA (1998) Detection of intrauterine viral infection using the polymerase chain reaction (PCR). Mol Genet Metab 63: 85–95PubMedGoogle Scholar
  251. 251.
    Friedman RA, Schowengerdt KO, Towbin JA (1998) Myocarditis. In: Bricker JT, Garson A Jr, Fisher DJ, Neish SR (eds) The science and practice of pediatric cardiology, 2nd ed. Williams & Wilkins, Baltimore, 1777–1794Google Scholar
  252. 252.
    Baboonian C, Davies MJ, Booth JC, McKenna WJ (1997) Coxsackie B viruses and human heart disease. Curr Top Microbiol Immunol 223: 31–52PubMedGoogle Scholar
  253. 253.
    Akhtar N, Ni J, Langston C, Demmler GJ, Towbin JA (1996) PCR diagnosis of viral pneumonitis from fixed-lung tissue in children. Biochem Mol Med 58: 66–76PubMedGoogle Scholar
  254. 254.
    McManus BM, Kandolf R (1991) Evolving concepts of cause, consequence and control in myocarditis. Curr Opin Cardiol 6: 418–427Google Scholar
  255. 255.
    Shimizu C, Rambaud C, Cheron G, Rouzioux C, Lozinski GM, Rao A, Stanway G, Krous HF, Burns JC (1995) Molecular identification of viruses in sudden infant death associated with myocarditis and pericarditis. Pediatr Infect Dis J 14: 584–588PubMedGoogle Scholar
  256. 256.
    Friedman RA, Kearney DL, Moak JP, Fenrich AL, Perry JC (1994) Persistence of ventricular arrhythmia after resolution of occult myocarditis in children and young adults. J Am Coll Cardiol 24: 780–783PubMedGoogle Scholar
  257. 257.
    Towbin JA, Bricker JT, Garson A Jr (1992) Electrocardiographic criteria for diagnosis of acute myocardial infarction in childhood. Am J Cardiol 69: 1545–1548PubMedGoogle Scholar
  258. 258.
    Grogan M, Redfield MM, Bailey KR, Reeders GS, Gersh BJ, Edwards WD, Rodeheffer RJ (1995) Long-term outcome of patients with biopsy-proven myocarditis: Comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 26: 80–84PubMedGoogle Scholar
  259. 259.
    Mason JW (1991) Distinct forms of myocarditis. Circulation 83: 1110–1111PubMedGoogle Scholar
  260. 260.
    Chow LH, Radio SJ, Sears TD et al (1889) Insensitivity of right ventricular biopsy in the diagnosis of myocarditis. J Am Coll Cardiol 14: 915–920Google Scholar
  261. 261.
    Hauck AJ, Kearney DL, Edwards WD (1989) Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: Implications for role of sampling error. Mayo Clin Proc 64: 1235–1245PubMedGoogle Scholar
  262. 262.
    Aretz HT (1987) Myocarditis: The Dallas criteria. Hum Pathol 18: 619–624PubMedGoogle Scholar
  263. 263.
    Shingu M (1989) Laboratory diagnosis of viral myocarditis: A review. Jpn Circ J 53: 87–93PubMedGoogle Scholar
  264. 264.
    Piedra PA, Poveda GA, Ramsey B, McCoy K, Hiatt PW (1998) Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: Implication for gene therapy with adenovirus vectors. Pediatrics 101: 1013–1019PubMedGoogle Scholar
  265. 265.
    Bowles NE, Richardson PJ, Olsen EGJ, Archard LC (1986) Detection of coxsackie-B virus specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1: 1120–1123PubMedGoogle Scholar
  266. 266.
    Bowles NE, Rose ML, Taylor P, Banner NR, Morgan-Capner P, Cunningham L, Archard LC, Yacoub MH (1989) End-stage dilated cardiomyopathy. Persistence of enterovirus RNA in myocardium at cardiac transplantation and lack of immune response. Circulation 80: 1128–1136PubMedGoogle Scholar
  267. 267.
    Archard LC, Khan MA, Soteriou BA, Zhang H, Why HJ, Robinson NM, Richardson PJ (1998) Characterization of coxsackie B virus RNA in myocardium from patients with dilated cardiomyopathy by nucleotide sequencing of reverse transcription-nested polymerase chain reaction products. Hum Pathol 29: 578–584PubMedGoogle Scholar
  268. 268.
    Jin O, Sole MJ, Butany JW, Chia WK, McLaughlin PR, Liu P, Liew CC (1990) Detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by polymerase chain reaction. Circulation 82: 8–16PubMedGoogle Scholar
  269. 269.
    Weiss LM, Liu XF, Chang KL, Billingham ME (1992) Detection of enteroviral RNA in idiopathic dilated cardiomyopathy and other human cardiac tissues. J Clin Invest 90: 156–159PubMedGoogle Scholar
  270. 270.
    Mantke OD, Meyer R, Prosch S, Nitsche A, Leitmeyer K, Kallies R, Niedrig M (2005) High prevalence of cardiotropic viruses in myocardial tissue from explanted hearts of hearts transplant recipients and heart donors: A 3-year retrospective study from a German patients’ pool. J Heart Lung Transplant 24: 1632–1638Google Scholar
  271. 271.
    Klingel K, Sauter M, Bock CT, Szalay G, Schnorr JJ, Kandolf R (2004) Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol (Berl) 193: 101–107Google Scholar
  272. 272.
    Hutchins GM, Vie SA (1972) The progression of interstitial myocarditis to idiopathic endocardial fibroelastosis. Am J Pathol 66: 483–496PubMedGoogle Scholar
  273. 273.
    Saphir O, Field M (1954) Complications of myocarditis in children. J Pediatr 45: 457–463PubMedGoogle Scholar
  274. 274.
    Burch GE, Sun S-C, Sohal RS, Chu KC, Colcolough HL (1968) Diphtheritic myocarditis. Am J Cardiol 21: 261–268PubMedGoogle Scholar
  275. 275.
    James TN (1968) Sudden death in babies: New observations on the heart. Am J Cardiol 22: 479–506PubMedGoogle Scholar
  276. 276.
    Davidoff R, Palacios I, Southern J, Fallon JT, Newell J, Dec GW (1991) Giant cell versus lymphocytic myocarditis. A comparison of their clinical features and long-term outcomes. Circulation 83: 953–961PubMedGoogle Scholar
  277. 277.
    Rosenstein ED, Zucker MJ, Kramer N (2000) Giant cell myocarditis: Most fatal of autoimmune diseases. Semin Arthritis Rheum 30: 1–16PubMedGoogle Scholar
  278. 278.
    Stoica SC, Goddard M, Tsuiu S, Dunning J, McNeil K, Parameshwar J, Large SR (2003) Ventricular assist surprise: Giant cell myocarditis or sarcoidosis? J Thorac Cardiovasc Surg 126: 2072–2074PubMedGoogle Scholar
  279. 279.
    Cooper LT Jr (2003) Idiopathic giant cell myocarditis. In: Cooper LT Jr (ed) Myocarditis: From Bench to Bedside. Humana Press, New Jersey, 405–420Google Scholar
  280. 280.
    McCarthy RE 3rd, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM, Baughman KL (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342: 690–695PubMedGoogle Scholar
  281. 281.
    Felker GM, Jaeger CJ, Klodas E, Thiemann DR, Hare JM, Hruban RH, Kasper EK, Baughman KL (2000) Myocarditis and long-term survival in peripartum cardiomyopathy. Am Heart J 140: 785–791PubMedGoogle Scholar
  282. 282.
    Grogan M, Redfield MM, Bailey KR, Reeder GS, Gersh BJ, Edwards WD, Rodeheffer RJ (1995) Long-term outcome of patients with biopsy-proven myocarditis: Comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 26: 80–84PubMedGoogle Scholar
  283. 283.
    Baboonian C, Treasure T (1997) Meta-analysis of the association of enteroviruses with human heart disease. Heart 178: 539–543Google Scholar
  284. 284.
    Martino TA, Liu P, Sole MJ (1994) Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res 74: 182–188PubMedGoogle Scholar
  285. 285.
    Badorff C, Lee G-H, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU (1999) Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5: 320–326PubMedGoogle Scholar
  286. 286.
    Towbin JA (1998) The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 10: 131–139PubMedGoogle Scholar
  287. 287.
    Towbin JA, Bowles NE (2002) The failing heart. Nature 415: 227–233PubMedGoogle Scholar
  288. 288.
    Grumbach IM, Heim A, Pring-Akerblom P, Vonhof S, Hein WJ, Muller G, Figulla HR (1999) Adenoviruses and enteroviruses as pathogens in myocarditis and dilated cardiomyopathy. Acta Cardiol 54: 83–88PubMedGoogle Scholar
  289. 289.
    Calabrese F, Thiene G (2003) Myocarditis and inflammatory cardiomyopathy: Microbiological and molecular aspects. Cardiovasc Res 60: 11–25PubMedGoogle Scholar
  290. 290.
    O’Connell JB, Fowles RE, Robinson JA, Subramanian R, Henkin RE, Gunnar RM (1984) Clinical and pathologic findings of myocarditis in two families with dilated cardiomyopathy. Am Heart J 167: 127–135Google Scholar
  291. 291.
    Bergelson JM, Cunningham JA, Drouguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323PubMedGoogle Scholar
  292. 292.
    Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94: 3352–3356PubMedGoogle Scholar
  293. 293.
    Poller W, Fechner H, Noutsias M, Tschoepe C, Schultheiss HP (2002) Highly variable expression of virus receptors in the human cardiovascular system. Implications for cardiotropic viral infections and gene therapy. Z Kardiol 91: 978–991PubMedGoogle Scholar
  294. 294.
    Bowles NE, Javier Fuentes-Garcia F, Makar KA, Li H, Gibson J, Soto F, Schwimmbeck PL, Schultheiss HP, Pauschinger M (2002) Analysis of the coxsackievirus or dilated cardiomyopathy. Mol Genet Metab 77: 257–259PubMedGoogle Scholar
  295. 295.
    Towbin JA (2002) Cardiomyopathy and heart transplantation in children. Curr Opin Cardiol 17: 274–279PubMedGoogle Scholar
  296. 296.
    Schowengerdt KO, Ni J, Denfield SW, Gajarski RJ, Radovancevic B, Frazier HO, Demmler GJ, Kearney D, Bricker JT, Towbin JA (1996) Diagnosis surveillance, and epidemiologic evaluation of viral infections in pediatric cardiac transplant recipients with the use of polymerase chain reaction. J Heart Lung Transplant 15: 111–123PubMedGoogle Scholar
  297. 297.
    Shirali GS, Ni J, Chinnock RE, Johnston JK, Rosenthal GL, Bowles NE, Towbin JA (2001) Association of viral genome with graft loss in children after cardiac transplantation. N Engl J Med 344: 1498–1503PubMedGoogle Scholar
  298. 298.
    Bridges ND, Spray TL, Collins MH, Bowles NE, Towbin JA (1998) Adenovirus infec tion in the lung results in graft failure after lung transplantation. J Thorac Cardiovasc Surg 116: 617–623PubMedGoogle Scholar
  299. 299.
    Parrillo JE (1998) Myocarditis: How should we treat in 1998? J Heart Lung Transplant 17: 941–944PubMedGoogle Scholar
  300. 300.
    Rezkalla S, Kloner RA, Khatib G, Khatib R (1990) Beneficial effects of captopril in acute coxsackievirus B3 murine myocarditis. Circulation 81: 1039–1046PubMedGoogle Scholar
  301. 301.
    Weller AH, Hall M, Huber SA (1992) Polyclonal immunoglobulin therapy protects against cardiac damage in experimental coxsackievirus-induced myocarditis. Eur Heart J 13: 115–119PubMedGoogle Scholar
  302. 302.
    Chan KY, Iwahara M, Benson LN, Wilson GJ, Freedom RM (1991) Immunosuppressive therapy in the management of acute myocarditis in children: A clinical trial. J Am Coll Cardiol 17: 458–460PubMedGoogle Scholar
  303. 303.
    Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G, Maseri A (2003) Immunosuppressive therapy for active lymphocytic myocarditis: Virological and immunologic profile of responders versus nonresponders. Circulation 107: 857–863PubMedGoogle Scholar
  304. 304.
    Drucker NA, Colan SD, Lewis AB, Beiser AS, Wessel DL, Takahashi M, Baker AL, Perez-Atayde AR, Newburger JW (1994) a-Globulin treatment of acute myocarditis on the pediatric population. Circulation 89: 252–257PubMedGoogle Scholar
  305. 305.
    Maisch B, Hufnagel G, Kolsch S, Funck R, Richter A, Rupp H, Herzum M, Pankuweit S (2004) Treatment of inflammatory dilated cardiomyopathy and (peri) myocarditis with immunosuppresion and i.v. immunoglobulins. Herz 29: 624–636PubMedGoogle Scholar
  306. 306.
    Kuhl U, Pauschinger M, Schwimmbeck PL, Seeberg B, Lober C, Noutsias M, Poller W, Schultheiss HP (2003) Interferon-β treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107: 2793–2798PubMedGoogle Scholar
  307. 307.
    Daliento L, Calabrese F, Tona F, Caforio AL, Tarsia G, Angelini A, Thiene G (2003) Successful treatment of enterovirus-induced myocarditis with interferon alpha. J Heart Lung Transplant 22: 214–217PubMedGoogle Scholar
  308. 308.
    Schindler E, Muller M, Kwapisz M, Akinturk H, Valeske K, Thul J, Hempelmann G (2003) Ventricular cardiac-assist devices in infants and children: Anesthetic considerations. J Cardiothorac Vasc Anesth 17: 617–621PubMedGoogle Scholar
  309. 309.
    Undar A, McKenzie ED, McGarry MC, Owens WR, Surprise DL, Kilpack VD, Mueller MW, Stayer SA, Andropoulos DB, Towbin JA, Fraser CD Jr (2004) Outcomes of congenital heart surgery patients after extracorporeal life support at Texas Children’s Hospital. Artif Organs 28: 963–966PubMedGoogle Scholar
  310. 310.
    Helman DN, Addonizio LJ, Morales DL, Catanese KA, Flannery MA, Quagebeur JM, Edwards NM, Galantowicz ME, Oz MC (2000) Implantable left ventricular assist devices can successfully bridge adolescent patients to transplant. J Heart Lung Transplant 19: 121–126PubMedGoogle Scholar
  311. 311.
    Deiwick M, Hoffmeier A, Tjan TD, Krasemann T, Schmid C, Scheld HH (2005) Heart failure in children — Mechanical assistance. Thorac Cardiovasc Surg 53 Suppl 2: S135–140PubMedGoogle Scholar
  312. 312.
    O’Connell JB, Dec GW, Goldenberg IF, Starling RC, Mudge GH, Augustine SM, Costanzo-Nordin MR, Hess ML, Hosenpud JD, Icenogle TB (1990) Results of heart transplantation for active lymphocytic myocarditis. J Heart Transplant 9: 351–356PubMedGoogle Scholar
  313. 313.
    Bengtssen E, Lamberger B (1966) Five year follow-up study of cases suggestive of acute myocarditis. Am Heart J 72: 751–763Google Scholar
  314. 314.
    Hastreiter AR, Miller RA (1964) Diagnosis and treatment of myocarditis and other myocardial diseases. Adv Cardiopulm Dis 22: 250–258PubMedGoogle Scholar
  315. 315.
    English RF, Janosky JE, Ettedgui JA, Webber SA (2004) Outcomes for children with acute myocarditis. Cardiol Young 14: 488–493PubMedGoogle Scholar
  316. 316.
    Zhang HY, Morgan-Capner P, Latif N, Pandolfino YA, Fan W, Dunn MJ, Archard LC (1997) Coxsackievirus B3-induced myocarditis: Characterization of stable attenuated variants that protect against infection with the cardiovirulent wild-type strain. Am J Pathol 150: 2197–2207PubMedGoogle Scholar

Copyright information

© Springer Basel 2010

Authors and Affiliations

  • Jeffrey A. Towbin
    • 1
    • 2
  • Matteo Vatta
    • 3
  1. 1.Departments of Pediatrics (Cardiology), Molecular and Human Genetics, and Cardiovascular Sciences, Baylor College of MedicineTexas Children’s HospitalHoustonUSA
  2. 2.The Heart Institute, Division of Pediatric CardiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Department of Pediatrics (Cardiology), Baylor College of MedicineTexas Children’s HospitalHoustonUSA

Personalised recommendations