Autoimmune Murine Myocarditis and Immunomodulatory Interventions

  • Christoph Berger
  • Urs Eriksson
Part of the Progress in Inflammation Research book series (PIR)


Murine models of autoimmune myocarditis help in the study of immunological aspects of inflammatory dilated cardiomyopathy (DCMi). Whereas transgenic mice are preferred for delineating key molecules for drug targeting, rats are mainly used for addressing functional effects of specific immunomodulatory interventions. Promising interventions must suppress the expansion of heartspecific autoreactive T cells, abrogate the accumulation of monocytes and granulocytes within the myocardium, and prevent pathological remodeling of the chronically inflamed heart. Given their critical role in the progression of experimental autoimmune myocarditis, TNF-α, IL-1β, IL-6, IL-23, IL-17, MCP-1, and MIP-1α appear as suitable candidates for cytokine targeting. Key molecules of innate activation pathways, such as PPARγ, represent other potential drug targets. A more preventive approach includes the development of vaccination strategies suppressing the expansion of autoreactive T cells or blocking pro-inflammatory cytokines. Taken together, we expect that insights from this model will soon result in clinically successful therapeutic options for DCMi.


Dilate Cardiomyopathy Cardiac Myosin Immunomodulatory Intervention Autoimmune Myocarditis Giant Cell Myocarditis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drory Y, Turetz Y, Hiss Y, Lev B, Fisman EZ, Pines A and Kramer MR (1991) Sudden unexpected death in persons less than 40 years of age. Am J Cardiol 68: 1388–92CrossRefPubMedGoogle Scholar
  2. 2.
    Kawai C (1999) From myocarditis to cardiomyopathy: Mechanisms of inflammation and cell death: Learning from the past for the future. Circulation 99: 1091–100PubMedGoogle Scholar
  3. 3.
    Wesslen L, Pahlson C, Lindquist O, Hjelm E, Gnarpe J, Larsson E, Baandrup U, Eriksson L, Fohlman J, Engstrand L et al (1996) An increase in sudden unexpected cardiac deaths among young Swedish orienteers during 1979–1992. Eur Heart J 17: 902–10PubMedGoogle Scholar
  4. 4.
    Caforio AL, Mahon NJ, Tona F and McKenna WJ (2002) Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: Pathogenetic and clinical significance. Eur J Heart Fail 4: 411–7CrossRefPubMedGoogle Scholar
  5. 5.
    Caforio AL, Stewart JT, Bonifacio E, Burke M, Davies MJ, McKenna WJ and Bottazzo GF (1990) Inappropriate major histocompatibility complex expression on cardiac tissue in dilated cardiomyopathy. Relevance for autoimmunity? J Autoimmun 3: 187–200CrossRefPubMedGoogle Scholar
  6. 6.
    Neumann DA, Burek CL, Baughman KL, Rose NR and Herskowitz A (1990) Circulating heart-reactive antibodies in patients with myocarditis or cardiomyopathy. J Am Coll Cardiol 16: 839–46CrossRefPubMedGoogle Scholar
  7. 7.
    Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G and Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139: 3630–6PubMedGoogle Scholar
  8. 8.
    Kodama M, Matsumoto Y, Fujiwara M, Masani F, Izumi T and Shibata A (1990) A novel experimental model of giant cell myocarditis induced in rats by immunization with cardiac myosin fraction. Clin Immunol Immunopathol 57: 250–62CrossRefPubMedGoogle Scholar
  9. 9.
    Liao L, Sindhwani R, Leinwand L, Diamond B and Factor S (1993) Cardiac alpha-myosin heavy chains differ in their induction of myocarditis. Identification of pathogenic epitopes. J Clin Invest 92: 2877–82CrossRefPubMedGoogle Scholar
  10. 10.
    Pummerer CL, Luze K, Grassl G, Bachmaier K, Offner F, Burrell SK, Lenz DM, Zamborelli TJ, Penninger JM and Neu N (1996) Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest 97: 2057–62CrossRefPubMedGoogle Scholar
  11. 11.
    Wegmann KW, Zhao W, Griffin AC and Hickey WF (1994) Identification of myocarditogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. The utility of a class II binding motif in selecting selfreactive peptides. J Immunol 153: 892–900PubMedGoogle Scholar
  12. 12.
    Eriksson U, Kurrer MO, Schmitz N, Marsch SC, Fontana A, Eugster HP and Kopf M (2003) Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation 107: 320–5CrossRefPubMedGoogle Scholar
  13. 13.
    Pummerer CL, Grassl G, Sailer M, Bachmaier KW, Penninger JM and Neu N (1996) Cardiac myosin-induced myocarditis: Target recognition by autoreactive T cells requires prior activation of cardiac interstitial cells. Lab Invest 74: 845–52PubMedGoogle Scholar
  14. 14.
    Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M and Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9: 1484–90CrossRefPubMedGoogle Scholar
  15. 15.
    Rose NR, Herskowitz A, Neumann DA and Neu N (1988) Autoimmune myocarditis: A paradigm of post-infection autoimmune disease. Immunol Today 9: 117–20CrossRefPubMedGoogle Scholar
  16. 16.
    Afanasyeva M, Georgakopoulos D, Belardi DF, Ramsundar AC, Barin JG, Kass DA and Rose NR (2004) Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: Correlation with cardiac function. Am J Pathol 164: 807–15CrossRefPubMedGoogle Scholar
  17. 17.
    Fairweather D, Kaya Z, Shellam GR, Lawson CM and Rose NR (2001) From infection to autoimmunity. J Autoimmun 16: 175–86CrossRefPubMedGoogle Scholar
  18. 18.
    Kodama M, Zhang S, Hanawa H and Shibata A (1992) Immunohistochemical characterization of infiltrating mononuclear cells in the rat heart with experimental autoimmune giant cell myocarditis. Clin Exp Immunol 90: 330–5CrossRefPubMedGoogle Scholar
  19. 19.
    Smith SC and Allen PM (1992) Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proc Natl Acad Sci USA 89: 9131–5CrossRefPubMedGoogle Scholar
  20. 20.
    Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274: R577–95PubMedGoogle Scholar
  21. 21.
    Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ and Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiacspecific overexpression of tumor necrosis factor-alpha. Circ Res 81: 627–35PubMedGoogle Scholar
  22. 22.
    Bachmaier K, Pummerer C, Kozieradzki I, Pfeffer K, Mak TW, Neu N and Penninger JM (1997) Low-molecular-weight tumor necrosis factor receptor p55 controls induction of autoimmune heart disease. Circulation 95: 655–61PubMedGoogle Scholar
  23. 23.
    Matsui Y, Okamoto H, Jia N, Akino M, Uede T, Kitabatake A and Nishihira J (2004) Blockade of macrophage migration inhibitory factor ameliorates experimental autoimmune myocarditis. J Mol Cell Cardiol 37: 557–66CrossRefPubMedGoogle Scholar
  24. 24.
    Goser S, Ottl R, Brodner A, Dengler TJ, Torzewski J, Egashira K, Rose NR, Katus HA and Kaya Z (2005) Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation 112: 3400–7CrossRefPubMedGoogle Scholar
  25. 25.
    Liu W, Nakamura H, Shioji K, Tanito M, Oka S, Ahsan MK, Son A, Ishii Y, Kishimoto C and Yodoi J (2004) Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice. Circulation 110: 1276–83CrossRefPubMedGoogle Scholar
  26. 26.
    Smith SC and Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147: 2141–7PubMedGoogle Scholar
  27. 27.
    Malkiel S, Factor S and Diamond B (1999) Autoimmune myocarditis does not require B cells for antigen presentation. J Immunol 163: 5265–8PubMedGoogle Scholar
  28. 28.
    Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291: 319–22CrossRefPubMedGoogle Scholar
  29. 29.
    Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N et al (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9: 1477–83CrossRefPubMedGoogle Scholar
  30. 30.
    Penninger JM, Neu N, Timms E, Wallace VA, Koh DR, Kishihara K, Pummerer C and Mak TW (1993) The induction of experimental autoimmune myocarditis in mice lacking CD4 or CD8 molecules. J Exp Med 178: 1837–42CrossRefPubMedGoogle Scholar
  31. 31.
    Matsui Y, Inobe M, Okamoto H, Chiba S, Shimizu T, Kitabatake A and Uede T (2002) Blockade of T cell costimulatory signals using adenovirus vectors prevents both the induction and the progression of experimental autoimmune myocarditis. J Mol Cell Cardiol 34: 279–95CrossRefPubMedGoogle Scholar
  32. 32.
    Matsui Y, Okamoto H, Inobe M, Jia N, Shimizu T, Akino M, Sugawara T, Tezuka K, Nakayama Y, Morimoto J et al (2003) Adenovirus-mediated gene transfer of ICOSIg fusion protein ameliorates ongoing experimental autoimmune myocarditis. Hum Gene Ther 14: 521–32CrossRefPubMedGoogle Scholar
  33. 33.
    Mutamatsu H, Suzuki J, Koga N, Adachi S, Kosuge H, Maejima Y, Haga T, Hirao K, Horuk R and Isobe M (2006) A CCR1 antagonist prevents the development of experimental autoimmune myocarditis in association with T cell inactivation. J Mol Cell Cardiol 40: 853–61CrossRefGoogle Scholar
  34. 34.
    Shioji K, Yuan Z, Kita T and Kishimoto C (2004) Immunoglobulin treatment suppressed adoptively transferred autoimmune myocarditis in severe combined immunodeficient mice. Am J Physiol Heart Circ Physiol 287: H2619–25CrossRefPubMedGoogle Scholar
  35. 35.
    Mosmann TR and Coffman RL (1989) TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–73CrossRefPubMedGoogle Scholar
  36. 36.
    Afanasyeva M, Wang Y, Kaya Z, Park S, Zilliox MJ, Schofield BH, Hill SL and Rose NR (2001) Experimental autoimmune myocarditis in A/J mice is an interleukin-4-dependent disease with a Th2 phenotype. Am J Pathol 159: 193–203CrossRefPubMedGoogle Scholar
  37. 37.
    Eriksson U, Kurrer MO, Sebald W, Brombacher F and Kopf M (2001) Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: Induction by IL-12 and protection by IFN-gamma. J Immunol 167: 5464–9PubMedGoogle Scholar
  38. 38.
    Eriksson U, Kurrer MO, Bingisser R, Eugster HP, Saremaslani P, Follath F, Marsch S and Widmer U (2001) Lethal autoimmune myocarditis in interferon-gamma receptordeficient mice: Enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103: 18–21PubMedGoogle Scholar
  39. 39.
    Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, Penninger JM and Eriksson U (2006) T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 203: 2009–19CrossRefPubMedGoogle Scholar
  40. 40.
    Okura Y, Takeda K, Honda S, Hanawa H, Watanabe H, Kodama M, Izumi T, Aizawa Y, Seki S and Abo T (1998) Recombinant murine interleukin-12 facilitates induction of cardiac myosin-specific type 1 helper T cells in rats. Circ Res 82: 1035–42PubMedGoogle Scholar
  41. 41.
    Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L and O’Shea JJ (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202: 139–56CrossRefPubMedGoogle Scholar
  42. 42.
    Afanasyeva M, Wang Y, Kaya Z, Stafford EA, Dohmen KM, Sadighi Akha AA and Rose NR (2001) Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation 104: 3145–51CrossRefPubMedGoogle Scholar
  43. 43.
    Brombacher F, Kastelein RA and Alber G (2003) Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends Immunol 24: 207–12CrossRefPubMedGoogle Scholar
  44. 44.
    Sonderegger I, Rohn TA, Kurrer MO, Iezzi G, Zou Y, Kastelein RA, Bachmann MF and Kopf M (2006) Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol 36: 2849–56CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang S, Kodama M, Hanawa H, Izumi T, Shibata A and Masani F (1993) Effects of cyclosporine, prednisolone and aspirin on rat autoimmune giant cell myocarditis. J Am Coll Cardiol 21: 1254–60CrossRefPubMedGoogle Scholar
  46. 46.
    Maeda K, Shioi T, Kosugi R, Yoshida Y, Takahashi K, Machida Y and Izumi T (2005) Rapamycin ameliorates experimental autoimmune myocarditis. Int Heart J 46: 513–30CrossRefPubMedGoogle Scholar
  47. 47.
    Kitabayashi H, Isobe M, Watanabe N, Suzuki J, Yazaki Y and Sekiguchi M (2000) FTY720 prevents development of experimental autoimmune myocarditis through reduction of circulating lymphocytes. J Cardiovasc Pharmacol 35: 410–6CrossRefPubMedGoogle Scholar
  48. 48.
    Yuan Z, Shioji K, Kihara Y, Takenaka H, Onozawa Y and Kishimoto C (2004) Cardioprotective effects of carvedilol on acute autoimmune myocarditis: Anti-inflammatory effects associated with antioxidant property. Am J Physiol Heart Circ Physiol 286: H83–90CrossRefPubMedGoogle Scholar
  49. 49.
    Matsui S, Zong ZP, Han JF, Katsuda S, Yamaguchi N and Fu ML (2003) Amiodarone minimizes experimental autoimmune myocarditis in rats. Eur J Pharmacol 469: 165–73CrossRefPubMedGoogle Scholar
  50. 50.
    Godsel LM, Leon JS, Wang K, Fornek JL, Molteni A and Engman DM (2003) Captopril prevents experimental autoimmune myocarditis. J Immunol 171: 346–52PubMedGoogle Scholar
  51. 51.
    Yuan Z, Kishimoto C, Shioji K, Nakamura H, Yodoi J and Sasayama S (2002) Temocapril treatment ameliorates autoimmune myocarditis associated with enhanced cardiomyocyte thioredoxin expression. Cardiovasc Res 55: 320–8CrossRefPubMedGoogle Scholar
  52. 52.
    Nimata M, Kishimoto C, Yuan Z and Shioji K (2004) Beneficial effects of olmesartan, a novel angiotensin II receptor type 1 antagonist, upon acute autoimmune myocarditis. Mol Cell Biochem 259: 217–22CrossRefPubMedGoogle Scholar
  53. 53.
    Yuan Z, Nimata M, Okabe TA, Shioji K, Hasegawa K, Kita T and Kishimoto C (2005) Olmesartan, a novel AT1 antagonist, suppresses cytotoxic myocardial injury in autoimmune heart failure. Am J Physiol Heart Circ Physiol 289: H1147–52CrossRefPubMedGoogle Scholar
  54. 54.
    Azuma RW, Suzuki J, Ogawa M, Futamatsu H, Koga N, Onai Y, Kosuge H and Isobe M (2004) HMG-CoA reductase inhibitor attenuates experimental autoimmune myocarditis through inhibition of T cell activation. Cardiovasc Res 64: 412–20CrossRefPubMedGoogle Scholar
  55. 55.
    Li WM, Liu W, Gao C and Zhou BG (2006) Immunoregulatory effects of atorvastatin on experimental autoimmune myocarditis in Lewis rats. Immunol Cell Biol 84: 274–80CrossRefPubMedGoogle Scholar
  56. 56.
    Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G and Maseri A (2003) Immunosuppressive therapy for active lymphocytic myocarditis: Virological and immunologic profile of responders versus nonresponders. Circulation 107: 857–63CrossRefPubMedGoogle Scholar
  57. 57.
    Node K, Fujita M, Kitakaze M, Hori M and Liao JK (2003) Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 108: 839–43CrossRefPubMedGoogle Scholar
  58. 58.
    Chung ES, Packer M, Lo KH, Fasanmade AA and Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: Results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107: 3133–40CrossRefPubMedGoogle Scholar
  59. 59.
    Kwon HJ, Cote TR, Cuffe MS, Kramer JM and Braun MM (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138: 807–11PubMedGoogle Scholar
  60. 60.
    George J, Barshack I, Malka E, Goldberg I, Keren P, Laniado S and Keren G (2001) The effect of intravenous immunoglobulins on the progression of experimental autoimmune myocarditis in the rat. Exp Mol Pathol 71: 55–62CrossRefPubMedGoogle Scholar
  61. 61.
    Smith SC and Allen PM (1992) Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. Circ Res 70: 856–63PubMedGoogle Scholar
  62. 62.
    Kubota T, Bounoutas GS, Miyagishima M, Kadokami T, Sanders VJ, Bruton C, Robbins PD, McTiernan CF and Feldman AM (2000) Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation 101: 2518–25PubMedGoogle Scholar
  63. 63.
    George J, Barshack I, Goldberg I, Keren P, Gazit A, Levitzki A, Keren G and Roth A (2004) The effect of early and late treatment with the tyrphostin AG-556 on the progression of experimental autoimmune myocarditis. Exp Mol Pathol 76: 234–41CrossRefPubMedGoogle Scholar
  64. 64.
    Maruyama S, Kato K, Kodama M, Okura Y, Hirono S, Fuse K, Hanawa H, Nakagawa O, Nakazawa M, Miida T et al (2003) FR167653 suppresses the progression of experimental autoimmune myocarditis. Mol Cell Biochem 246: 39–44CrossRefPubMedGoogle Scholar
  65. 65.
    Hasegawa H, Takano H, Zou Y, Qin Y, Hizukuri K, Odaka K, Toyozaki T and Komuro I (2005) Pioglitazone, a peroxisome proliferator-activated receptor gamma activator, ameliorates experimental autoimmune myocarditis by modulating Th1/Th2 balance. J Mol Cell Cardiol 38: 257–65CrossRefPubMedGoogle Scholar
  66. 66.
    Maruyama S, Kato K, Kodama M, Hirono S, Fuse K, Nakagawa O, Nakazawa M, Miida T, Yamamoto T, Watanabe K et al (2002) Fenofibrate, a peroxisome proliferatoractivated receptor alpha activator, suppresses experimental autoimmune myocarditis by stimulating the interleukin-10 pathway in rats. J Atheroscler Thromb 9: 87–92PubMedGoogle Scholar
  67. 67.
    Yuan Z, Liu Y, Liu Y, Zhang J, Kishimoto C, Wang Y, Ma A and Liu Z (2003) Peroxisome proliferation-activated receptor-gamma ligands ameliorate experimental autoimmune myocarditis. Cardiovasc Res 59: 685–94CrossRefPubMedGoogle Scholar
  68. 68.
    Elnaggar R, Hanawa H, Liu H, Yoshida T, Hayashi M, Watanabe R, Abe S, Toba K, Yoshida K, Chang H et al (2005) The effect of hydrodynamics-based delivery of an IL-13-Ig fusion gene for experimental autoimmune myocarditis in rats and its possible mechanism. Eur J Immunol 35: 1995–2005CrossRefPubMedGoogle Scholar
  69. 69.
    Chang H, Hanawa H, Liu H, Yoshida T, Hayashi M, Watanabe R, Abe S, Toba K, Yoshida K, Elnaggar R et al (2006) Hydrodynamic-based delivery of an interleukin-22-Ig fusion gene ameliorates experimental autoimmune myocarditis in rats. J Immunol 177: 3635–43PubMedGoogle Scholar
  70. 70.
    Watanabe K, Nakazawa M, Fuse K, Hanawa H, Kodama M, Aizawa Y, Ohnuki T, Gejyo F, Maruyama H and Miyazaki J (2001) Protection against autoimmune myocarditis by gene transfer of interleukin-10 by electroporation. Circulation 104: 1098–100CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2010

Authors and Affiliations

  • Christoph Berger
    • 1
  • Urs Eriksson
    • 1
    • 2
    • 3
  1. 1.Departments of Internal Medicine and ResearchUniversity HospitalBaselSwitzerland
  2. 2.GZO AG Spital WetzikonWetzikonSwitzerland
  3. 3.Universitätsspital ZürichZürichSwitzerland

Personalised recommendations