Skip to main content

Radiolarian faunal turnover through the Paleocene-eocene transition, Mead Stream, New Zealand

  • Conference paper
Radiolaria

Part of the book series: Eclogae Geologicae Helvetiae Supplement ((SWISSGEO,volume 2))

Abstract

The Mead Stream section, northern Clarence Valley, is the most complete Paleocene-early Eocene record of pelagic sedimentation in the mid-latitude (~55° S paleolatitude) Pacific Ocean. Integrated studies of sediments, siliceous and calcareous microfossils and carbon isotopes have shown that major global climate events are recorded by distinct changes in lithofacies and biofacies. The consistent and often abundant occurrence of siliceous microfossils in the section provides a rare opportunity to undertake quantitative analysis of high-latitude radiolarian population changes through the late Paleocene and early Eocene. Late Paleocene assemblages are dominated by spumellarians, although the nassellarian species Buryella tetradica is the most abundant species. The Paleocene-Eocene boundary (= base of Paleocene-Eocene thermal maximum) in the Mead Stream section is marked by major faunal turnover, including an abrupt decrease in B. tetradica, first occurrences of several low-latitude species (e.g. Amphicraspedum prolixum s.s., Lychnocanium auxilla, Podocyrtis papalis, Phormocyrtis turgida, Theocorysl phyzella) and increased abundance of large, robust spumellarians relative to small actinommids. Above an 18-m thick, lowermost Eocene interval in which radiolarians are abundant to common, radiolarian abundance declines progressively, falling to <10 individuals per gram in the marl-dominated unit that is correlated with the early Eocene climatic optimum. These trends in siliceous microfossil populations signal major changes in watermass characteristics along the northeastern New Zealand margin in the earliest Eocene. Assemblages typical of cool, eutrophic, watermasses that dominated the Marlborough Paleocene were replaced in the early Eocene by assemblages more characteristic of oligotrophic, stratified, subtropical-tropical watermasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berggren W., Kent D., Swisher C. & Aubry M.-P. 1995: A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W. et al. (Eds): Geochronology, time scales and global stratigraphic correlation, 129–212, SEPM Special Publication 54.

    Google Scholar 

  • Boltovsky D. 1987: Sedimentary record of radiolarian biogeography in the equatorial to Antarctic western Pacific Ocean. Micropaleontology 33, 267–281.

    Article  Google Scholar 

  • Casey R. 1993: Radiolaria. In: Lipps, J.H. (Ed.): Fossil Prokaryotes and Protists, 249–284. Blackwell Scientific Publications, Oxford/London, UK.

    Google Scholar 

  • Caulet J., Venec-Peyre M.-T., Vergnaud-Grazzini C. & Nigrini C. 1992: Variation of South Somalian upwelling during the last 160 ka: radiolarian and foraminifera records in core MD 85674. In: Summerhayes, C. et al. (Eds): Upwelling Systems: Evolution since the Early Miocene, Geological Society of London, Special Publication 64, 379–389.

    Google Scholar 

  • Corfield R. M. & Cartlidge J. E. 1992: Océanographic and climatic implications of the Palaeocene carbon isotope maximum. Terra Nova 4, 443–455.

    Article  Google Scholar 

  • Crampton J., Laird M., Nicol A., Townsend D. & Van Dissen R. 2003: Palinspastic reconstructions of southeastern Marlborough, New Zealand, for Late Cretaceous to Eocene times. New Zealand Journal of Geology and Geophysics 46, 153–175.

    Article  Google Scholar 

  • De Wever P., Dumitrica P., Caulet J.-P., Nigrini C. & Caridroit M. 2001: Radiolarians in the sedimentary record. 533 p., Gordon and Breach Science Publishers, The Netherlands.

    Google Scholar 

  • Hancock H., Dickens G., Strong C, Hollis C. & Field B. 2003: Foraminiferal and carbon isotope stratigraphy through the Paleocene-Eocene transition at Dee Stream, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 46, 1–19.

    Article  Google Scholar 

  • Hollis C. 1996: Radiolarian faunal change through the Cretaceous-Tertiary transition of eastern Marlborough, New Zealand. In: MacLeod, N. & Keller, G. (Eds.): Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes, 173–204, Norton Press, New York.

    Google Scholar 

  • -1997: Cretaceous-Paleocene Radiolaria from eastern Marlborough, New Zealand. Institute of Geological and Nuclear-Sciences Monograph 17,152 p.

    Google Scholar 

  • -2002: Biostratigraphy and paleoceanographic significance of Paleocene radiolarians from offshore eastern New Zealand. Marine Micropaleontology 46, 265–316.

    Google Scholar 

  • Hollis C, Dickens G., Field B., Jones C. & Strong C. 2005: The Paleocene-Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. Palaeogeography, Palaeoclimatology, Paleoecology 215,313–343.

    Article  Google Scholar 

  • Hollis C, Rodgers K. & Parker R. 1995: Siliceous plankton bloom in the earliest Tertiary of Marlborough, New Zealand. Geology (Boulder) 23, 835–838.

    Article  Google Scholar 

  • Hollis C, Waghorn D., Strong C. & Crouch E. 1997: Integrated Paleogene biostratigraphy of DSDP site 277 (Leg 29): foraminifera, calcareous nannofossils, Radiolaria, and palynomorphs. Institute of Geological & Nuclear Sciences Science Report 97/7, 1–73.

    Google Scholar 

  • Hollis C, Rodgers K., Strong C, Field B. & Rogers K. 2003a: Paleoenvironmental changes across the Cretaceous/Tertiary boundary in the northern Clarence Valley, southeastern Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 46,209–234.

    Article  Google Scholar 

  • Hollis C, Strong C, Rodgers K. & Rogers K. 2003b: Paleoenvironmental changes across the Cretaceous/Tertiary boundary at Flaxbourne River and Woodside Creek, eastern Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 46,177–197.

    Article  Google Scholar 

  • Hollis C, Dickens G., Field B., Jones C. & Strong C. 2005: The Paleocene-Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. Palaeogeography, Palaeoclimatology, Paleoecology 215, 313–343.

    Article  Google Scholar 

  • Huber M. 2002: Straw man 1; preliminary view of the tropical Pacific from a global coupled climate model simulation of the early Paleogene. Proceedings of the Ocean Drilling Program, initial reports, Paleogene equatorial transect, Leg 199. Proceedings of the Ocean Drilling Program, Part A: Initial Reports 199, 30.

    Google Scholar 

  • Keller G., Adatte T., Hollis C, Ordonez M., Zambrano I., Jimenez N., Stinnesbeck E., Aleman A. & Hale-Erlich W. 1997: The Cretaceous/Tertiary boundary event in Ecuador: reduced biotic effects due to eastern boundary current setting. Marine Micropaleontology 31, 97–133.

    Article  Google Scholar 

  • Killops S., Hollis C, Morgans H., Sutherland R., Field B. & Leckie D. 2000: Paleoceanographic significance of Late Paleocene dysaerobia at the shelf/slope break around New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 51–70.

    Article  Google Scholar 

  • King P., Naish T., Browne G., Field B. & Edbrooke S. 1999: Cretaceous to Recent sedimentary patterns in New Zealand. Institute of Geological and Nuclear Sciences Folio Series 1. 35 p.

    Google Scholar 

  • Kurtz A., Kump L., Arthur M., Zachos J. & Paytan A. 2003: Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18(4), 1090, doi:10.1029/2003PA000908

    Google Scholar 

  • Lipps J. H. 1993: Fossil prokaryotes and protists. 342 p., Blackwell Scientific, Boston.

    Google Scholar 

  • Nigrini C. & Sanfilippo A. 2000: Paleogene radiolarians from Sites 998, 999, and 1001 in the Caribbean. Proceedings of the Ocean Drilling Program, Scientific Results 165, 57–81.

    Google Scholar 

  • Reay M. 1993: Geology of the middle part of the Clarence Valley. Institute of Geological and Nuclear Sciences Geological Map 10.144 p. + 1 map.

    Google Scholar 

  • Sanfilippo A. & Blome C. 2001: Biostratigraphic implications of mid-latitude Palaeocene-Eocene radiolarian faunas from Hole 1051 A, ODP Leg 171B

    Google Scholar 

  • Blake Nose, western North Atlantic. In: Kroon, D. et al. (Eds.): Western North Atlantic Palaeogene and Cretaceous palaeoceanography. Geological Society Special Publication 183,185–224.

    Google Scholar 

  • Sanfilippo A. & Nigrini C. 1998a: Upper Paleocene-Lower Eocene deep-sea radiolarian stratigraphy and the Paleocene/Eocene Series boundary. In: Aubry, M.-P., et al. (Eds.): Late Paleocene-Early Eocene climatic and biotic events in the marine and terrestrial records, 244–276, Columbia University Press, New York.

    Google Scholar 

  • -1998b: Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. Marine Micropaleontology 33,109–156.

    Article  Google Scholar 

  • Strong C, Hollis C. & Wilson G. 1995: Foraminiferal, radiolarian, and dinoflagellate biostratigraphy of Late Cretaceous to middle Eocene pelagic sediments (Muzzle Group), Mead Stream, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 38,171–209.

    Article  Google Scholar 

  • Sutherland R., King P. & Wood R. 2001: Tectonic evolution of Cretaceous rift basins in south-eastern Australia and New Zealand: implications for exploration risk assessment. In: Hill K. & Bernecker T. (Eds.): Eastern Australasian basins symposium: a refocused energy perspective for the future. Petroleum Exploration Society of Australia Special Publication 1, 3–13.

    Google Scholar 

  • Thompson E. & Schmitz B. 1997: Barium and the late Paleocene δ13C maximum: evidence of increased marine surface productivity. Paleoceanography 12, 239–254.

    Article  Google Scholar 

  • Zachos J., Pagani M., Sloan L., Thomas E. & Billups K. 2001: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693.

    Article  Google Scholar 

  • Zachos J., Wara M., Bohaty S., Delaney M., Petrizzo M., Brill A., Bralower T. & Premoli-Silva I. 2003: A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302,1551–1554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter O. Baumgartner Jonathan C. Aitchison Patrick De Wever Sarah-Jane Jackett

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Swiss Geological Society

About this paper

Cite this paper

Hollis, C.J. (2007). Radiolarian faunal turnover through the Paleocene-eocene transition, Mead Stream, New Zealand. In: Baumgartner, P.O., Aitchison, J.C., De Wever, P., Jackett, SJ. (eds) Radiolaria. Eclogae Geologicae Helvetiae Supplement, vol 2. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8344-2_7

Download citation

Publish with us

Policies and ethics