Skip to main content

Recent Trends in Statistical QSAR Modeling of Environmental Chemical Toxicity

  • Chapter
  • First Online:

Part of the book series: Experientia Supplementum ((EXS,volume 101))

Abstract

Quantitative cheminformatics approaches such as QSAR modeling find growing applications in chemical risk assessment. Traditional methods rely on the use of calculated chemical descriptors of molecules and relatively small training sets. However, in recent years, there is a trend toward the increased use of in vitro biological testing approaches to reduce both the length of experimental studies and the animal use for chemical risk assessment. Furthermore, there is also much greater emphasis on model validation using external datasets to enable the reliable use of computational models as part of regulatory decision making. In this chapter, recent trends emphasizing the need for both careful curation of experimental data prior to model development and rigorous model validation are investigated. Furthermore, recent approaches to chemical toxicity prediction that employ both chemical descriptors and in vitro screening data for developing novel hybrid chemical/biological models are being reviewed. Examples of respective application studies that employ novel workflows for model developments are described and recent important efforts by several academic, nonprofit, and industrial groups to start placing both data and, especially, models in the public domain are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this paper, we shell use the terms QSAR and QSPR interchangeably

References

  1. Collins FS, Gray GM, Bucher JR (2008) Toxicology―transforming environmental health protection. Science 319:906–907

    Article  PubMed  CAS  Google Scholar 

  2. (2007) Toxicity testing in the 21st century: a vision and a strategy. Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council, National Academy of Science, The National Academies Press, Washington, DC

    Google Scholar 

  3. Shukla SJ, Huang R, Austin CP, Xia M (2010) The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today 15:997–1007

    Article  PubMed  CAS  Google Scholar 

  4. Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492

    Article  PubMed  CAS  Google Scholar 

  5. Tunkel J, Mayo K, Austin C, Hickerson A, Howard P (2005) Practical considerations on the use of predictive models for regulatory purposes. Environ Sci Technol 39:2188–2199

    Article  PubMed  CAS  Google Scholar 

  6. Zvinavashe E, Murk AJ, Rietjens IM (2008) Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Chem Res Toxicol 21:2229–2236

    Article  PubMed  CAS  Google Scholar 

  7. Miller JA, Miller EC (1977) Ultimate chemical carcinogen as reactive mutagenic electrophiles. In: Hiatt HH, Watson JD, Winsten JA (eds) Origin of human cancers. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 605–627

    Google Scholar 

  8. Ashby J, Tennant RW (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res 204:17–115

    Article  PubMed  CAS  Google Scholar 

  9. Ashby J, Tennant RW, Zeiger E, Stasiewicz S (1989) Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. Mutat Res 223:73–103

    Article  PubMed  CAS  Google Scholar 

  10. Ashby J, Tennant RW (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res 257:229–306

    Article  PubMed  CAS  Google Scholar 

  11. Tennant RW, Ashby J (1991) Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 39 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. Mutat Res 257:209–227

    Article  PubMed  CAS  Google Scholar 

  12. Votano JR, Parham M, Hall LH, Kier LB, Oloff S, Tropsha A, Xie Q, Tong W (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377

    Article  PubMed  CAS  Google Scholar 

  13. Valerio LG Jr (2009) In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 241:356–370

    Article  PubMed  CAS  Google Scholar 

  14. Durham SK, Pearl GM (2001) Computational methods to predict drug safety liabilities. Curr Opin Drug Discov Devel 4:110–115

    PubMed  CAS  Google Scholar 

  15. Jacobson-Kram D, Contrera JF (2007) Genetic toxicity assessment: employing the best science for human safety evaluation. Part I: Early screening for potential human mutagens. Toxicol Sci 96:16–20

    Article  PubMed  CAS  Google Scholar 

  16. Muster W, Breidenbach A, Fischer H, Kirchner S, Müller L, Pahler A (2008) Computational toxicology in drug development. Drug Discov Today 13:303–310

    Article  PubMed  CAS  Google Scholar 

  17. Snyder RD (2009) An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with reference to in silico predictivity. Environ Mol Mutagen 50:435–450

    Article  PubMed  CAS  Google Scholar 

  18. Bailey AB, Chanderbhan R, Collazo-Braier N, Cheeseman MA, Twaroski ML (2005) The use of structure-activity relationship analysis in the food contact notification program. Regul Toxicol Pharmacol 42:225–235

    Article  PubMed  CAS  Google Scholar 

  19. Valerio LG Jr (2008) Tools for evidence-based toxicology: computational-based strategies as a viable modality for decision support in chemical safety evaluation and risk assessment. Hum Exp Toxicol 27:757–760

    Article  PubMed  CAS  Google Scholar 

  20. Zvinavashe E, Murk AJ, Rietjens IM (2009) On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity. Toxicol Lett 184:67–72

    Article  PubMed  CAS  Google Scholar 

  21. Stouch TR, Kenyon JR, Johnson SR, Chen XQ, Doweyko A, Li Y (2003) In silico ADME/Tox: why models fail. J Comput Aided Mol Des 17:83–92

    Article  PubMed  CAS  Google Scholar 

  22. Lombardo F, Gifford E, Shalaeva MY (2003) In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem 3:861–875

    Article  PubMed  CAS  Google Scholar 

  23. Hansch C, Fujita T (1964) r-s-p Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  24. Zheng W, Tropsha A (2000) Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40:185–194

    Article  PubMed  CAS  Google Scholar 

  25. Tropsha A (2005) Application of predictive QSAR models to database mining. In: Oprea TI (ed) Cheminformatics in drug discovery. Wiley-VCH, New York, NY, pp 437–455

    Chapter  Google Scholar 

  26. Tropsha A (2003) Recent trends in quantitative structure-activity relationships. In: Abraham D (ed) Burger’s medicinal chemistry and drug discovery. Wiley, New York, NY, pp 49–77

    Google Scholar 

  27. Tropsha A (2006) Predictive QSAR (quantitative structure activity relationships) modeling. In: Martin YC (ed) Comprehensive medicinal chemistry II. Elsevier, Amsterdam, pp 113–126

    Google Scholar 

  28. Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J Chem Inf Model 45:1256–1266

    Article  PubMed  CAS  Google Scholar 

  29. Tetko IV (2002) Neural network studies. 4. Introduction to associative neural networks. J Chem Inf Comput Sci 42:717–728

    Article  PubMed  CAS  Google Scholar 

  30. Zupan J, Novic M, Gasteiger J (1995) Neural networks with counter-propagation learning-strategy used for modelling. Chemometr Intell Lab Syst 27:175–187

    CAS  Google Scholar 

  31. Devillers J (1996) Strengths and weaknesses of the back propagation neural network in QSAR and QSPR studies. In: Devillers J (ed) Genetic algorithms in molecular modeling. Academic, London, pp 1–24

    Chapter  Google Scholar 

  32. Engels MFM, Wouters L, Verbeeck R, Vanhoof G (2002) Outlier mining in high throughput screening experiments. J Biomol Screen 7:341–351

    Article  PubMed  CAS  Google Scholar 

  33. Schuurmann G, Aptula AO, Kuhne R, Ebert RU (2003) Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay. Chem Res Toxicol 16:974–987

    Article  PubMed  CAS  Google Scholar 

  34. Xue Y, Li H, Ung CY, Yap CW, Chen YZ (2006) Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chem Res Toxicol 19:1030–1039

    Article  PubMed  CAS  Google Scholar 

  35. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth & Brooks, Monterey, CA

    Google Scholar 

  36. Deconinck E, Hancock T, Coomans D, Massart DL, van der Heyden Y (2005) Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. J Pharm Biomed Anal 39:91–103

    Article  PubMed  CAS  Google Scholar 

  37. MOE, Molecular Operating Environment (2005) http://www.chemcomp.com/fdept/prodinfo.htm#Cheminformatics. Accessed Jan 2005

  38. Put R, Perrin C, Questier F, Coomans D, Massart DL, van der Heyden Y (2003) Classification and regression tree analysis for molecular descriptor selection and retention prediction in chromatographic quantitative structure-retention relationship studies. J Chromatogr A 988:261–276

    Article  PubMed  CAS  Google Scholar 

  39. Breiman L (2001) Random forests. Machine Learn 45:5–32

    Article  Google Scholar 

  40. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958

    Article  PubMed  CAS  Google Scholar 

  41. Put R, Xu QS, Massart DL, van der Heyden Y (2004) Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. J Chromatogr A 1055:11–19

    Article  PubMed  CAS  Google Scholar 

  42. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  43. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, NY

    Google Scholar 

  44. Aires-de-Sousa J, Gasteiger J (2005) Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions. J Comb Chem 7:298–301

    Article  PubMed  CAS  Google Scholar 

  45. Oloff S, Mailman RB, Tropsha A (2005) Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J Med Chem 48:7322–7332

    Article  PubMed  CAS  Google Scholar 

  46. Chohan KK, Paine SW, Waters NJ (2006) Quantitative structure activity relationships in drug metabolism. Curr Top Med Chem 6:1569–1578

    Article  PubMed  CAS  Google Scholar 

  47. de Cerqueira LP, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 46:1245–1254

    Article  CAS  Google Scholar 

  48. Kovatcheva A, Golbraikh A, Oloff S, Xiao YD, Zheng W, Wolschann P, Buchbauer G, Tropsha A (2004) Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci 44:582–595

    Article  PubMed  CAS  Google Scholar 

  49. Wang XS, Tang H, Golbraikh A, Tropsha A (2008) Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J Chem Inf Model 48:997–1013

    Article  PubMed  CAS  Google Scholar 

  50. Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Article  PubMed  CAS  Google Scholar 

  51. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Quant Struct Act Relat Comb Sci 22:69–77

    CAS  Google Scholar 

  52. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369

    Article  PubMed  CAS  Google Scholar 

  53. Norinder U (1996) Single and domain made variable selection in 3D QSAR applications. J Chemomet 10:95–105

    Article  CAS  Google Scholar 

  54. Zefirov NS, Palyulin VA (2001) QSAR for boiling points of “small” sulfides. Are the “high-quality structure-property-activity regressions” the real high quality QSAR models? J Chem Inf Comput Sci 41:1022–1027

    Article  PubMed  CAS  Google Scholar 

  55. Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41:2553–2564

    Article  PubMed  CAS  Google Scholar 

  56. Novellino E, Fattorusso C, Greco G (1995) Use of comparative molecular field analysis and cluster analysis in series design. Pharm Acta Helv 70:149–154

    Article  CAS  Google Scholar 

  57. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  PubMed  CAS  Google Scholar 

  58. Jorgensen WL (2006) QSAR/QSPR and proprietary data. J Chem Inf Model 46:937

    Article  CAS  Google Scholar 

  59. Tropsha A, Cho SJ (1998) Cross-validated R2-guided region selection for CoMFA studies. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design. Kluwer Academic, Dordrecht, pp 57–69

    Google Scholar 

  60. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    Article  PubMed  CAS  Google Scholar 

  61. Moss GP, Cronin MTD (2002) Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data. Int J Pharm 238:105–109

    Article  PubMed  CAS  Google Scholar 

  62. Estrada E, Patlewicz G (2004) On the usefulness of graph-theoretic descriptors in predicting theoretical parameters. Phototoxicity of polycyclic aromatic hydrocarbons (PAHs). Croat Chem Acta 77:203–211

    CAS  Google Scholar 

  63. Leo AJ, Hansch C (1999) Role of hydrophobic effects in mechanistic QSAR. Perspect Drug Discov Des 17:1–25

    Article  CAS  Google Scholar 

  64. Dearden JC, Cronin MT, Kaiser KL (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266

    Article  PubMed  CAS  Google Scholar 

  65. QSAR Expert Group (2004) The Report from the Expert Group on (Quantitative) structure-activity relationships [(Q)SARs] on the principles for the validation of (Q)SARs. OECD (Organisation for Economic Co-operation and Development) Paris 49: 206

    Google Scholar 

  66. Pavan M, Netzeva TI, Worth AP (2006) Validation of a QSAR model for acute toxicity. SAR QSAR Environ Res 17:147–171

    Article  PubMed  CAS  Google Scholar 

  67. Vracko M, Bandelj V, Barbieri P, Benfenati E, Chaudhry Q, Cronin M, Devillers J, Gallegos A, Gini G, Gramatica P, Helma C, Mazzatorta P, Neagu D, Netzeva T, Pavan M, Patlewicz G, Randić M, Tsakovska I, Worth AP (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res 17:265–284

    Article  PubMed  CAS  Google Scholar 

  68. Saliner AG, Netzeva TI, Worth AP (2006) Prediction of estrogenicity: validation of a classification model. SAR QSAR Environ Res 17:195–223

    Article  PubMed  CAS  Google Scholar 

  69. Roberts DW, Aptula AO, Patlewicz G (2006) Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability domain for skin sensitization. Chem Res Toxicol 19:1228–1233

    Article  PubMed  CAS  Google Scholar 

  70. Zhang S, Golbraikh A, Tropsha A (2006) Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J Med Chem 49:2713–2724

    Article  PubMed  CAS  Google Scholar 

  71. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488

    Article  CAS  Google Scholar 

  72. Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13:3494–3504

    Article  PubMed  CAS  Google Scholar 

  73. Walker T, Grulke CM, Pozefsky D, Tropsha A (2010) Chembench: a cheminformatics workbench. Bioinformatics 26:3000–3001

    Article  PubMed  CAS  Google Scholar 

  74. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5:231–243

    Article  PubMed  Google Scholar 

  75. ToxRefDB (2010) http://www.epa.gov/NCCT/toxrefdb. Accessed Jan 2010

  76. DSSTox (2010) http://www.epa.gov/comptox/dsstox/. Accessed Jan 2010

  77. ToxRefDB (2010) http://actor.epa.gov/toxrefdb/faces/Home.jsp. Accessed Jan 2010

  78. FDA Liver Side Effect (2010) http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092203.htm. Accessed Jan 2010

  79. Leadscope (2010) http://www.leadscope.com/product_info.php?products_id=78. Accessed Jan 2010

  80. MDL® Toxicity (2010) www.symyx.com/products/pdfs/toxds.pdf. Accessed Jan 2010

  81. Lhasa Vitic (2010) http://www.lhasalimited.org/vitic_nexus/. Accessed Jan 2010

  82. NCGC, National Cencer of Chemical Genomics (2010) http://www.ncgc.nih.gov. Accessed Jan 2010

  83. PubChem (2008) http://pubchem.ncbi.nlm.nih.gov/. Accessed Jan 2008

  84. ChEMBLdb (2010) http://www.ebi.ac.uk/chembldb/index.php. Accessed Jan 2010

  85. ToxCast™ (2010) http://www.epa.gov/comptox/toxcast/. Accessed Jan 2010

  86. ToxNET (2010) http://www.toxnet.nlm.nih.gov. Accessed Jan 2010

  87. Olah M, Mracec M, Ostopovici L, Rad R, Bora A, Hadaruga N, Olah I, Banda M, Simon Z, Mracec M, Oprea TI (2005) WOMBAT: world of molecular bioactivity. In: Oprea TI (ed) Chemoinformatics in drug discovery, Chap 9. Wiley-VCH, New York, NY, pp 223–239

    Google Scholar 

  88. Olah M, Rad R, Ostopovici L, Bora A, Hadaruga N, Hadaruga D, Moldovan R, Fulias A, Mracec M, Oprea TI (2007) WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery. In: Schreiber SL, Kapoor TM, Weiss G (eds) Chemical biology: from small molecules to systems biology and drug design, Vol 2. Wiley-VCH, Weinheim, pp 760–786

    Google Scholar 

  89. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204

    Article  PubMed  CAS  Google Scholar 

  90. Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A (2010) Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect 119:364–370

    Article  PubMed  CAS  Google Scholar 

  91. Parham F, Austin C, Southall N, Huang R, Tice R, Portier C (2009) Dose-response modeling of high-throughput screening data. J Biomol Screen 14:1216–1227

    Article  PubMed  CAS  Google Scholar 

  92. Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A (2010) Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol 23:171–183

    Article  PubMed  CAS  Google Scholar 

  93. ChemAxon (2010) ChemAxon JChem. http://www.chemaxon.com. Accessed Jan 2010

  94. ISIDA Software (2010) Louis Pasteur University Strasbourg, Laboratoire d’Infochimie, France. http://infochim.u-strasbg.fr. Accessed Jan 2010

  95. Young D, Martin D, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27:1337–1345

    Article  CAS  Google Scholar 

  96. Tetko IV, Sushko I, Pandey AK, Zhu H, Tropsha A, Papa E, Oberg T, Todeschini R, Fourches D, Varnek A (2008) Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model 48:1733–1746

    Article  PubMed  CAS  Google Scholar 

  97. Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints. J Chem Inf Model 46:1535

    Article  PubMed  CAS  Google Scholar 

  98. Johnson SR (2008) The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 48:25–26

    Article  PubMed  CAS  Google Scholar 

  99. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and research. Academic, New York, NY

    Google Scholar 

  100. OpenBabel (2010) The OpenSource chemistry toolbox. http://www.Openbabel.org. Accessed Jan 2010

  101. OpenEye Scientific Software (2010) http://www.eyesopen.com/products/applications/filter.html. Accessed Jan 2010

  102. Kuz’min VE, Artemenko AG, Muratov EN (2008) Hierarchical QSAR technology on the base of simplex representation of molecular structure. J Comp Aid Mol Des 22:403–421

    Article  CAS  Google Scholar 

  103. Hyleos (2010) http://www.hyleos.net/. Accessed Jan 2010

  104. Molecular Networks GmbH (2010) http://www.molecular-networks.com/products. Accessed Jan 2010

  105. CambridgeSoft (2009) http://www.cambridgesoft.com/. Accessed Jan 2009

  106. Zhu H, Rusyn I, Richard A, Tropsha A (2008) Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. Environ Health Perspect 116:506–513

    PubMed  CAS  Google Scholar 

  107. Zhu H, Ye L, Richard A, Golbraikh A, Wright FA, Rusyn I, Tropsha A (2009) A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ Health Perspect 117:1257–1264

    PubMed  CAS  Google Scholar 

  108. OpenTOX (2010) http://www.opentox.org. Accessed Jan 2010

  109. Aptula AO, Roberts DW, Cronin MTD, Schultz TW (2005) Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis. Chem Res Toxicol 18:844–854

    Article  PubMed  CAS  Google Scholar 

  110. Netzeva TI, Schultz TW (2005) QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Chemosphere 61:1632–1643

    Article  PubMed  CAS  Google Scholar 

  111. Schultz TW, Sinks GD, Miller LA (2001) Population growth impairment of sulfur-containing compounds to Tetrahymena pyriformis. Environ Toxicol 16:543–549

    Article  PubMed  CAS  Google Scholar 

  112. Schultz TW, Cronin MT, Netzeva TI, Aptula AO (2002) Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis. Chem Res Toxicol 15:1602–1609

    Article  PubMed  CAS  Google Scholar 

  113. Schultz TW, Netzeva TI, Cronin MT (2003) Selection of data sets for QSARs: Analyses of Tetrahymena toxicity from aromatic compounds. SAR QSAR Environ Res 14:59–81

    Article  PubMed  CAS  Google Scholar 

  114. Schultz TW, Netzeva TI (2004) Development and evaluation of QSARs for ecotoxic endpoints: The benzene response-surface model for Tetrahymena toxicity. In: Cronin MTD, Livingstone DJ (eds) Modeling environmental fate and toxicity. CRC, Boca Raton, FL, pp 265–284

    Google Scholar 

  115. Schultz TW, Netzeva TI, Roberts DW, Cronin MT (2005) Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, α,β-unsaturated chemicals. Chem Res Toxicol 18:330–341

    Article  PubMed  CAS  Google Scholar 

  116. Schultz TW, Yarbrough JW, Woldemeskel M (2005) Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates. Cell Biol Toxicol 21:181–189

    Article  PubMed  CAS  Google Scholar 

  117. Schultz TW (1999) Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chem Res Toxicol 12:1262–1267

    Article  PubMed  CAS  Google Scholar 

  118. Schultz TW, Hewitt M, Netzeva TI, Cronin MTD (2007) Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci 26:238–254

    Article  CAS  Google Scholar 

  119. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  120. Yang C, Richard AM, Cross KP (2006) The art of data mining the minefields of toxicity databases to link chemistry to biology. Curr Comput Aided Drug Des 2:135–150

    Article  CAS  Google Scholar 

  121. Klopman G, Zhu H, Ecker G, Chiba P (2003) MCASE study of the multidrug resistance reversal activity of propafenone analogs. J Comput Aided Mol Des 17:291–297

    Article  PubMed  CAS  Google Scholar 

  122. Stoner CL, Gifford E, Stankovic C, Lepsy CS, Brodfuehrer J, Prasad JV, Surendran N (2004) Implementation of an ADME enabling selection and visualization tool for drug discovery. J Pharm Sci 93:1131–1141

    Article  PubMed  CAS  Google Scholar 

  123. Mayer P, Reichenberg F (2006) Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environ Toxicol Chem 25:2639–2644

    Article  PubMed  CAS  Google Scholar 

  124. Forsby A, Blaauboer B (2007) Integration of in vitro neurotoxicity data with biokinetic modelling for the estimation of in vivo neurotoxicity. Hum Exp Toxicol 26:333–338

    Article  PubMed  CAS  Google Scholar 

  125. Schirmer K, Tanneberger K, Kramer NI, Volker D, Scholz S, Hafner C, Lee LC, Bols NC, Hermens JL (2008) Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Aquat Toxicol 90:128–137

    Article  PubMed  CAS  Google Scholar 

  126. Piersma AH, Janer G, Wolterink G, Bessems JG, Hakkert BC, Slob W (2008) Quantitative extrapolation of in vitro whole embryo culture embryotoxicity data to developmental toxicity in vivo using the benchmark dose approach. Toxicol Sci 101:91–100

    Article  PubMed  CAS  Google Scholar 

  127. Sjostrom M, Kolman A, Clemedson C, Clothier R (2008) Estimation of human blood LC50 values for use in modeling of in vitro-in vivo data of the ACuteTox project. Toxicol In Vitro 22:1405–1411

    Article  PubMed  CAS  Google Scholar 

  128. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103:11473–11478

    Article  PubMed  CAS  Google Scholar 

  129. Thomas CJ, Auld DS, Huang R, Huang W, Jadhav A, Johnson RL, Leister W, Maloney DJ, Marugan JJ, Michael S, Simeonov A, Southall N, Xia M, Zheng W, Inglese J, Austin CP (2009) The pilot phase of the NIH Chemical Genomics Center. Curr Top Med Chem 9:1181–1193

    Article  PubMed  CAS  Google Scholar 

  130. Sedykh A, Zhu H, Tang H, Zhang L, Rusyn I, Richard A, Rusyn I, Tropsha A (2011) The use of dose-response qHTS data as biological descriptors improves the prediction accuracy of QSAR models of acute rat toxicity. Environ Health Perspect 119:364–370

    Article  PubMed  CAS  Google Scholar 

  131. Xia M, Huang R, Witt KL, Southall N, Fostel J, Cho MH, Jadhav A, Smith CS, Inglese J, Portier CJ, Tice RR, Austin CP (2008) Compound cytotoxicity profiling using quantitative high-throughput screening. Environ Health Perspect 116:284–291

    Article  PubMed  CAS  Google Scholar 

  132. Zhu H, Martin TM, Ye L, Sedykh A, Young DM, Tropsha A (2009) Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chem Res Toxicol 22:1913–1921

    Article  PubMed  CAS  Google Scholar 

  133. DEREK (2010) http://www.lhasalimited.org/index.php/derek/. Accessed Jan 2010

  134. CompuDrug (2010) http://www.compudrug.com. Accessed Jan 2010

  135. MultiCASE (2010) http://www.multicase.com. Accessed Jan 2010

  136. TOPKAT (2010) http://www.accelrys.com/mini/toxicology/predictive-functionality.html. Accessed Jan 2010

  137. OECD (Q)SAR Project (2010) http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015_1_1_1_1,00.html. Accessed Jan 2010

  138. EPA QSAR (2010) http://www.epa.gov/nrmrl/std/cppb/qsar/. Accessed Jan 2010

  139. EPA EPI (2010) http://www.epa.gov/oppt/exposure/pubs/episuite.htm. Accessed Jan 2010

  140. REACH CheSAR (2010) http://www.reach-compliance.eu/english/compliance/CSA/CHESAR_CSA_CSR_Tool.html. Accessed Jan 2010

  141. REACH Regulation (2010) http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm. Accessed Jan 2010

  142. Hardy B, Douglas N, Helma C, Rautenberg M, Jeliazkova N, Jeliazkov V, Nikolova I, Benigni R, Tcheremenskaia O, Kramer S, Girschick T, Buchwald F, Wicker J, Karwath A, Gütlein M, Maunz A, Sarimveis H, Melagraki G, Afantitis A, Sopasakis P, Gallagher D, Poroikov V, Filimonov D, Zakharov A, Lagunin A, Gloriozova T, Novikov S, Skvortsova N, Druzhilovsky D, Chawla S, Ghosh I, Ray S, Patel H, Escher S (2010) Collaborative development of predictive toxicology applications. J Cheminform 2:7

    Article  PubMed  Google Scholar 

  143. Ekins S, Williams AJ (2010) Precompetitive preclinical ADME/Tox data: Set it free on the web to facilitate computational model building and assist drug development. Lab Chip 10:13–22

    Article  PubMed  CAS  Google Scholar 

  144. Gupta RR, Gifford EM, Liston T, Waller CL, Hohman M, Bunin BA, Ekins S (2010) Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Drug Metab Dispos 38:2083–2090

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to members of his laboratory who have been involved in research projects described herein as well as colleagues at EPA and UNC for many fruitful discussions. The author also appreciates the financial support of his laboratory from NIH (grants R01GM066940 and R21GM076059) and EPA (grants RD832720 and RD833825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tropsha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Tropsha, A. (2012). Recent Trends in Statistical QSAR Modeling of Environmental Chemical Toxicity. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_13

Download citation

Publish with us

Policies and ethics