Advertisement

Analytical toxicology

  • Hans H. Maurer
Part of the Experientia Supplementum book series (EXS, volume 100)

Abstract

This paper reviews procedures for screening, identification and quantification of drugs, poisons and their metabolites in biosamples, and the corresponding work-up procedures. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry are mostly used today in analytical toxicology. Selection of the most appropriate biosample, e.g., ante/postmortem blood, urine, or tissues or alternative matrices like hair, sweat and oral fluid, nails or meconium, is discussed. The importance of quality control and possibilities and limitations of interpretation of the analytical result are also discussed.

Keywords

Analytical Toxicology Forensic Toxicology Anal Toxicol Urine Drug Screening Systematic Toxicological Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maurer HH (2007) Analytical toxicology. Anal Bioanal Chem 388: 1311PubMedCrossRefGoogle Scholar
  2. 2.
    Maurer HH (2007) Demands on scientific studies in clinical toxicology. Forensic Sci Int 165: 194–198PubMedCrossRefGoogle Scholar
  3. 3.
    Flanagan RJ, Taylor AA, Watson ID, Whelpton R (2009) Fundamentals of Analytical Toxicology. John Wiley & Sons, Chichester, UKGoogle Scholar
  4. 4.
    Kuelpmann, WR (2009) Clinical Toxicological Analysis — Procedures, Results, Interpretation. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  5. 5.
    Drummer OH (2007) Requirements for bioanalytical procedures in postmortem toxicology. Anal Bioanal Chem 388: 1495–1503PubMedCrossRefGoogle Scholar
  6. 6.
    Gray T, Huestis M (2007) Bioanalytical procedures for monitoring in utero drug exposure. Anal Bioanal Chem 388: 1455–1465PubMedCrossRefGoogle Scholar
  7. 7.
    Kintz P (2007) Bioanalytical procedures for detection of chemical agents in hair in the case of drug-facilitated crimes. Anal. Bioanal Chem 388: 1467–1474PubMedCrossRefGoogle Scholar
  8. 8.
    Kraemer T, Paul LD (2007) Bioanalytical procedures for determination of drugs of abuse in blood. Anal Bioanal Chem 388: 1415–1435PubMedCrossRefGoogle Scholar
  9. 9.
    Maurer HH (2007) Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicology. Anal Bioanal Chem 388: 1315–1325PubMedCrossRefGoogle Scholar
  10. 10.
    Musshoff F, Madea B (2007) Analytical pitfalls in hair testing. Anal Bioanal Chem 388: 1475–1494PubMedCrossRefGoogle Scholar
  11. 11.
    Pragst F (2007) Application of solid-phase microextraction in analytical toxicology. Anal Bioanal Chem 388: 1393–1414PubMedCrossRefGoogle Scholar
  12. 12.
    Samyn N, Laloup M, de Boeck G (2007) Bioanalytical procedures for determination of drugs of abuse in oral fluid. Anal Bioanal Chem 388: 1437–1453PubMedCrossRefGoogle Scholar
  13. 13.
    Thevis M, Schanzer W (2007) Current role of LC-MS in doping control. Anal Bioanal Chem 388: 1351–1358PubMedCrossRefGoogle Scholar
  14. 14.
    Wille SM, Lambert WE (2007) Recent developments in extraction procedures relevant to analytical toxicology. Anal Bioanal Chem 388: 1381–1391PubMedCrossRefGoogle Scholar
  15. 15.
    Drummer OH (2008) Introduction and review of collection techniques and applications of drug testing of oral fluid. Ther Drug Monit 30: 203–206PubMedGoogle Scholar
  16. 16.
    Moeller KE, Lee KC, Kissack JC (2008) Urine drug screening: Practical guide for clinicians. Mayo Clin Proc 83: 66–76PubMedCrossRefGoogle Scholar
  17. 17.
    Maurer HH (2009) Mass spectrometric approaches in impaired driving toxicology. Anal Bioanal Chem 393: 97–107PubMedCrossRefGoogle Scholar
  18. 18.
    Peters FT, Maurer HH (2002) Bioanalytical method validation and its implications for forensic and clinical toxicology — A review. Accred Qual Assur 7: 441–449CrossRefGoogle Scholar
  19. 19.
    Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165: 216–224PubMedCrossRefGoogle Scholar
  20. 20.
    Maurer HH (2006) Hyphenated mass spectrometric techniques — Indispensable tools in clinical and forensic toxicology and in doping control. J Mass Spectrom 41: 1399–1413PubMedCrossRefGoogle Scholar
  21. 21.
    Pelander A, Ojanpera I, Sistonen J, Rasanen I, Vuori E (2003) Screening for basic drugs in 2-mL urine samples by dual-plate overpressured layer chromatography and comparison with gas chromatography-mass spectrometry. J Anal Toxicol 27: 226–232PubMedGoogle Scholar
  22. 22.
    Rasanen I, Kontinen I, Nokua J, Ojanpera I, Vuori E (2003) Precise gas chromatography with retention time locking in comprehensive toxicological screening for drugs in blood. J Chromatogr B Analyt Technol Biomed Life Sci 788: 243–250PubMedCrossRefGoogle Scholar
  23. 23.
    Pragst F, Herzler M, Erxleben BT (2004) Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). Clin Chem Lab Med 42: 1325–1340PubMedCrossRefGoogle Scholar
  24. 24.
    Pragst F, Herzler M, Herre S, Erxleben BT, Rothe M (2007) UV Spectra of Toxic Compounds: Database of Photodiode Array UV Spectra of Illegal and Therapeutic Drugs, Pesticides, Ecotoxic Substances and Other Poisons. Verlag Toxicological Chemistry, Berlin, GermanyGoogle Scholar
  25. 25.
    Maurer HH (2004) Position of chromatographic techniques in screening for detection of drugs or poisons in clinical and forensic toxicology and/or doping control. Clin Chem Lab Med 42: 1310–1324PubMedCrossRefGoogle Scholar
  26. 26.
    Maurer, HH, Pfleger K, Weber, AA (2007) Mass Spectral and GC Data of Drugs, Poisons, Pesticides, Pollutants and Their Metabolites. 3rd edn., Wiley-VCH, Weinheim, GermanyGoogle Scholar
  27. 27.
    Saint-Marcoux F, Sauvage FL, Marquet P (2007) Current role of LC-MS in therapeutic drug monitoring. Anal Bioanal Chem 388: 1327–1349PubMedCrossRefGoogle Scholar
  28. 28.
    Tagliaro F, Bortolotti F, Pascali JP (2007) Current role of capillary electrophoretic/electrokinetic techniques in forensic toxicology. Anal Bioanal Chem 388: 1359–1364PubMedCrossRefGoogle Scholar
  29. 29.
    Maurer HH, Kraemer T, Kratzsch C, Paul LD, Peters FT, Springer D, Staack RF, Weber AA (2002) What is the appropriate analytical strategy for effective management of intoxicated patients? In: Proceedings of the 39th International TIAFT Meeting in Prague 2001), 61–75Google Scholar
  30. 30.
    Maurer HH, Peters FT (2005) Twoards high-throughput drug screening using mass spectrometry. Ther Durg Monit 27: 686–688CrossRefGoogle Scholar
  31. 31.
    Maurer HH (2005) Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin Biochem 38: 310–318PubMedCrossRefGoogle Scholar
  32. 32.
    Maurer HH (2005) Advances in analytical toxicology: Current role of liquid chromatography-mass spectrometry for drug quantification in blood and oral fluid. Anal Bioanal Chem 381: 110–118PubMedCrossRefGoogle Scholar
  33. 33.
    Flanagan RJ (2004) Developing an analytical toxicology service: Principles and guidance. Toxicol Rev 23: 251–263PubMedCrossRefGoogle Scholar
  34. 34.
    Flanagan RJ, Connally G, Evans JM (2005) Analytical toxicology: Guidelines for sample collection postmortem. Toxicol Rev 24: 63–71PubMedCrossRefGoogle Scholar
  35. 35.
    Wu AH, McKay C, Broussard LA, Hoffman RS, Kwong TC, Moyer TP, Otten EM, Welch SL, Wax P (2003) National Academy of clinical biochemistry laboratory medicine practice guidelines: Recommendations for the use of laboratory tests to support poisoned patients who present to the emergency department. Clin Chem 49: 357–379PubMedCrossRefGoogle Scholar
  36. 36.
    Boyer EW, Shannon MW (2003) Which drug tests in medical emergencies? Clin Chem 49: 353–354PubMedCrossRefGoogle Scholar
  37. 37.
    Bailey B, Amre DK (2005) A toxicologist’s guide to studying diagnostic tests. Clin Toxicol 43: 171–179Google Scholar
  38. 38.
    Peters FT, Jung J, Kraemer T, Maurer HH (2005) Fast, simple, and validated gas chromatographic-mass spectrometric assay for quantification of drugs relevant to diagnosis of brain death in human blood plasma samples. Ther Drug Monit 27: 334–344PubMedCrossRefGoogle Scholar
  39. 39.
    Segura J, Pascual JA, Gutierrez-Gallego R (2007) Procedures for monitoring recombinant erythropoietin and analogues in doping control. Anal Bioanal Chem 388: 1521–1529PubMedCrossRefGoogle Scholar
  40. 40.
    Peters FT (2007) Stability of analytes in biosamples: An important issue in clinical and forensic toxicology? Anal Bioanal Chem 388: 1505–1519PubMedCrossRefGoogle Scholar
  41. 41.
    Maurer HH (2007) Forensic screening with GC-MS. In: M Bogusz (ed.): Handbook of Analytical Separation Sciences: Forensic Sciences 2nd edn., Elsevier Science, Amsterdam, 429–449Google Scholar
  42. 42.
    von Mach MA, Weber C, Meyer MR, Weilemann LS, Maurer HH, Peters FT (2007) Comparison of urinary on-site immunoassay screening and gas chromatography—mass spectrometry results of 111 patients with suspected poisoning presenting at an emergency department. Ther Drug Monit 29: 27–39CrossRefGoogle Scholar
  43. 43.
    Stanley SD, McKemie D, Skinner W (2003) Large-volume injection gas chromatography-mass spectrometry for automated broad-spectrum drug screening in horse urine. J Anal Toxicol 27: 325–331PubMedGoogle Scholar
  44. 44.
    Thevis M, Schanzer W (2007) Mass spectrometry in sports drug testing: Structure characterization and analytical assays. Mass Spectrom Rev 26: 79–107PubMedCrossRefGoogle Scholar
  45. 45.
    Thevis M, Opfermann G, Schanzer W (2003) Liquid chromatography/electrospray ionization tandem mass spectrometric screening and confirmation methods for ß2-agonists in human or equine urine. J Mass Spectrom 38: 1197–1206PubMedCrossRefGoogle Scholar
  46. 46.
    Peters FT, Drvarov O, Lottner S, Spellmeier A, Rieger K, Haefeli WE, Maurer HH (2009) A systematic comparison of four different workup procedures for systematic toxicological analysis of urine sample using gas chromatography-mass spectrometry. Anal Bioanal Chem 393: 735–745PubMedCrossRefGoogle Scholar
  47. 47.
    Decaestecker TN, Coopman EM, van Peteghem CH, van Bocxlaer JF (2003) Suitability testing of commercial solid-phase extraction sorbents for sample clean-up in systematic toxicological analysis using liquid chromatography-(tandem) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 789: 19–25PubMedCrossRefGoogle Scholar
  48. 48.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49: 1041–1044PubMedCrossRefGoogle Scholar
  49. 49.
    Liang HR, Foltz RL, Meng M, Bennett P (2003) Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stableisotope-labeled internal standards in quantitative lipid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 17: 2815–2821PubMedCrossRefGoogle Scholar
  50. 50.
    Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14: 1290–1294PubMedCrossRefGoogle Scholar
  51. 51.
    Müller C, Schäfer P, Störtzel M, Vogt S, Weinmann W (2002) Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries. J Chromatogr B Analyt Technol Biomed Life Sci 773: 47–52PubMedCrossRefGoogle Scholar
  52. 52.
    Mortier KA, Clauwaert KM, Lambert WE, van Bocxlaer JF, van den Eeckhout EG, van Peteghem CH, de Leenheer AP (2001) Pitfalls associated with liquid chromatography/electrospray tandem mass spectrometry in quantitative bioanalysis of drugs of abuse in saliva. Rapid Commun Mass Spectrom 15: 1773–1775PubMedCrossRefGoogle Scholar
  53. 53.
    King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11: 942–950PubMedCrossRefGoogle Scholar
  54. 54.
    Pelander A, Ojanpera I, I, Laks S, Rasanen I, Vuori E (2003) Toxicological screening with formula-based metabolite identification by liquid chromatography/time-of-flight mass spectrometry. Anal Chem 75: 5710–5718PubMedCrossRefGoogle Scholar
  55. 55.
    Josefsson M, Kronstrand R, Andersson J, Roman M (2003) Evaluation of electrospray ionisation liquid chromatography-tandem mass spectrometry for rational determination of a number of neuroleptics and their major metabolites in human body fluids and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 789: 151–167PubMedCrossRefGoogle Scholar
  56. 56.
    Thevis M, Opfermann G, Schanzer W (2001) High speed determination of β-receptor blocking agents in human urine by liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 15: 393–402PubMedCrossRefGoogle Scholar
  57. 57.
    Spahn LH, Benet LZ (1992) Acyl glucuronides revisited: Is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab Rev 24: 5–47CrossRefGoogle Scholar
  58. 58.
    Maurer HH, Bickeboeller-Friedrich J (2000) Screening procedure for detection of antidepressants of the selective serotonin reuptake inhibitor type and their metabolites in urine as part of a modified systematic toxicological analysis procedure using gas chromatography-mass spectrometry. J Anal Toxicol 24: 340–347PubMedGoogle Scholar
  59. 59.
    Maurer HH, Tauvel FX, Kraemer T (2001) Screening procedure for detection of non-steroidal antiinflammatory drugs (NSAIDs) and their metabolites in urine as part of a systematic toxicological analysis (STA) procedure for acidic drugs and poisons by gas chromatography-mass spectrometry (GC-MS) after extractive methylation. J Anal Toxicol 25: 237–244PubMedGoogle Scholar
  60. 60.
    Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Recent developments in solid-phase microextraction. Anal Bioanal Chem 393: 781–795PubMedCrossRefGoogle Scholar
  61. 61.
    Kumazawa T, Seno H, Watanabe-Suzuki K, Hattori H, Ishii A, Sato K, Suzuki O (2000) Determination of phenothiazines in human body fluids by solid-phase microextraction and liquid chromatography/tandem mass spectrometry. J Mass Spectrom 35: 1091–1099PubMedCrossRefGoogle Scholar
  62. 62.
    Maurer HH, Arlt JW (1998) Detection of 4-hydroxycoumarin anticoagulants and their metabolites in urine as part of a systematic toxicological analysis procedure for acidic drugs and poisons by gas chromatography-mass spectrometry after extractive methylation. J Chromatogr B Biomed Sci Appl 714: 181–195PubMedCrossRefGoogle Scholar
  63. 63.
    Maurer HH, Arlt JW (1999) Screening procedure for detection of dihydropyridine calcium channel blocker metabolites in urine as part of a systematic toxicological analysis procedure for acidics by gas chromatography-mass spectrometry (GC-MS) after extractive methylation. J Anal Toxicol 23: 73–80PubMedGoogle Scholar
  64. 64.
    Beyer J, Peters FT, Maurer HH (2005) Screening procedure for detection of stimulant laxatives and/or their metabolites in human urine using gas chromatography-mass spectrometry after enzymatic cleavage of conjugates and extractive methylation. Ther Drug Monit 27: 151–157PubMedCrossRefGoogle Scholar
  65. 65.
    Beyer J, Bierl A, Peters FT, Maurer HH (2005) Screening procedure for detection of diuretics and uricosurics and/or their metabolites in human urine using gas chromatography-mass spectrometry after extractive methylation. Ther Drug Monit 27: 509–520PubMedCrossRefGoogle Scholar
  66. 66.
    Peters FT, Samyn N, Kraemer T, Riedel W, Maurer HH (2007) Negative-ion chemical ionization gas chromatographic-mass spectrometric assay for enantioselective determination of amphetamines in oral fluid: Application to a controlled study with MDMA and driving under the influence of drugs cases. Clin Chem 53: 702–710PubMedCrossRefGoogle Scholar
  67. 67.
    Peters FT, Samyn N, Lamers C, Riedel W, Kraemer T, de Boeck G, Maurer HH (2005) Drug testing in blood: Validated negative-ion chemical ionization gas chromatographic-mass spectrometric assay for enantioselective determination of the designer drugs MDA, MDMA (ecstasy) and MDEA and its application to samples from a controlled study with MDMA. Clin Chem 51: 1811–1822PubMedCrossRefGoogle Scholar
  68. 68.
    Peters FT, Samyn N, Wahl M, Kraemer T, de Boeck G, Murer HH (2003) Concentrations and ratios of amphetamine, methamphetamine, MDA, MDMA, and MDEA enantiomers determined in plasma samples from clinical toxicology and driving under the influence of drugs cases by GC-NICI-MS. J Anal Toxicol 27: 552–559PubMedGoogle Scholar
  69. 69.
    Peters FT, Kraemer T, Maurer HH (2002) Drug testing in blood: Validated negative-ion chemical ionization gas chromatography-mass spectrometric assay for determination of amphetamine and methamphetamine enantiomers and its application to toxicology cases. Clin Chem 48: 1472–1485PubMedGoogle Scholar
  70. 70.
    Maurer HH (2002) The role of gas chromatography-mass spectrometry with negative ion chemical ionization (GC-MS-NCI) in clinical and forensic toxicology, doping control and biomonitoring. Ther Drug Monit 24: 247–254PubMedCrossRefGoogle Scholar
  71. 71.
    Maurer HH, Kraemer T, Kratzsch C, Peters FT, Weber AA (2002) Negative ion chemical ionization gas chromatography-mass spectrometry (NICI-GC-MS) and atmospheric pressure chemical ionization liqui chromatography-mass spectrometry (APCI-LC-MS) of low-dosed and/or polar drugs in plasma. Ther Drug Monit 24: 117–124PubMedCrossRefGoogle Scholar
  72. 72.
    Segura J, Venture R, Jurado C (1998) Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B 713: 61–90CrossRefGoogle Scholar
  73. 73.
    Fuentes-Block L (2000) Drug screening: Interactions, pitfalls, and techniques. MLO Med Lab Obs 32: 26–35PubMedGoogle Scholar
  74. 74.
    Maurer HH, Sauer C, Theoblad DS (2006) Toxicokinetics of drugs of abuse: Current knowledge of the isoenzymes involved in the human metabolism of tetrahydrocannabinol, cocaine, heroin, morphine, and codeine. Ther Drug Monit 28: 447–453PubMedCrossRefGoogle Scholar
  75. 75.
    Ewald AH, Peters FT, Weise M, Maurer HH (2005) Studies on the metabolism and toxicological detection of the designer drug 4-mehylthioamphetamine (4-MTA) in human urine using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 824: 123–131PubMedCrossRefGoogle Scholar
  76. 76.
    Theobald DS, Staack RF, Puetz M, Maurer HH (2005) New designer drug 2,5-dimethoxy-4-ethylthio-β-phenethylamine (2C-T-2): Studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom 40: 1157–1172PubMedCrossRefGoogle Scholar
  77. 77.
    Theobald DS, Fehn S, Maurer HH (2005) New designer drug 2,5-dimethoxy-4-propylthiophenethylamine (2C-T-7): Studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom 40: 105–116PubMedCrossRefGoogle Scholar
  78. 78.
    Ewald AH, Fritschi G, Maurer HH (2006) Designer drug 2,4,5-trimethoxyamphetamine (TMA-2): Studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 41: 1140–1148PubMedCrossRefGoogle Scholar
  79. 79.
    Ewald AH, Fritschi G, Bork WR, Maurer HH (2006) Designer drugs 2,5-dimethoxy-4-bromoamphetamine (DOB) and 2,5-dimethoxy-4-bromomethamphetamine (MDOB): Studies on their metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 41: 487–498PubMedCrossRefGoogle Scholar
  80. 80.
    Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2006) New designer drug (1-(1-phenylcyclohexyl)-3-ethoxypropylamine (PCEPA): Studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom 41: 1014–1029PubMedCrossRefGoogle Scholar
  81. 81.
    Theobald DS, Putz M, Schneider E, Maurer HH (2006) New designer drug 4-iodo-2,5-dimethoxy-β-phenethylamine (2C-I): Studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric and capillary electrophoretic/mass spectrometric techniques. J Mass Spectrom 41: 872–886PubMedCrossRefGoogle Scholar
  82. 82.
    Theobald DS, Maurer HH (2006) Studies on the metabolism and toxicological detection of the designer drug 4-ethyl-2,5-dimethoxy-β-phenethylamine (2C-E) in rat urine using gas chromatographic-mass spectrometric techniques. J Chromatogr B Analyt Technol Biomed Life Sci 842: 76–90PubMedCrossRefGoogle Scholar
  83. 83.
    Ewald AH, Fritschi G, Maurer HH (2007) Metabolism and toxicological detection of the designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) in rat urine using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 857: 170–174PubMedCrossRefGoogle Scholar
  84. 84.
    Sauer C, Peters FT, Meyer MR, Maurer HH (2007) Studies on the CYP isoform dependent metabolism of the new phencyclidine-derived designer drug PCEPA. Ther Drug Monit 29: 463Google Scholar
  85. 85.
    Ewald AH, Ehlers D, Maurer HH (2008) Metabolism and toxicological detection of the designer drug 4-chloro-2,5-dimethoxyamphetamine in rat urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 390: 1837–1842PubMedCrossRefGoogle Scholar
  86. 86.
    Ewald AH, Fritschi G, Maurer HH (2008) Studies on the metabolism and toxicological detection of the designer drug DOI in rat urine using GC-MS techniques. Proceedings of the XVth GTFCh Symposium in Mosbach (2007), 259–262Google Scholar
  87. 87.
    Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) Metabolism and toxicological detection of a new designer drug, N-(1-phenylcyclohexyl)propanamine, in rat urine using gas chromatography-mass spectrometry. J Chromatogr A 1186: 380–390PubMedCrossRefGoogle Scholar
  88. 88.
    Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) New designer drugs N-(1-phenylcyclohexyl)-2-ethoxyethanamine (PCEEA) and N-(1-pheylcyclohexyl)-2-methoxyethanamine (PCMEA): Studies on their metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 43: 305–316PubMedCrossRefGoogle Scholar
  89. 89.
    Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) Metabolism and toxicological detection of the designer drug N-(1-phenylcyclohexyl)-3-methoxyppropanamine (PCMPA) in rat urine using gas chromatography-mass spectrometry. Forensic Sci Int 181: 47–51PubMedCrossRefGoogle Scholar
  90. 90.
    Maurer HH, Pfleger K, Weber AA (2007) Mass Spectral Library of Drugs, Poisons, Pesticides, Pollutants and Their Metabolites. 4th edn., Wiley-VCH, Weinheim, GermanyGoogle Scholar
  91. 91.
    McLafferty FW (2001) Registry of Mass Spectral Data. 7th edn., John Wiley & Sons, New York, NYGoogle Scholar
  92. 92.
    U.S. Department of Commerce (2005) NIST/EPA/NIH Mass Spectral Library 2005. John Wiley & Sons, New York, NYGoogle Scholar
  93. 93.
    Hoja H, Marquet P, Verneuil B, Lotfi H, Penicaut B, Lachatre G (1997) Applications of liquid chromatography-mass spectrometry in analytical toxicology: A review. J Anal Toxicol 21: 116–126PubMedGoogle Scholar
  94. 94.
    Maurer HH (1998) Liquid chromatography-mass spectrometry in forensic and clinical toxicology. J Chromatogr B Biomed Sci Appl 713: 3–25PubMedCrossRefGoogle Scholar
  95. 95.
    Peters FT (2006) Method validation using LC-MS. In: A Polettini (ed.): Applications of Liquid Chromatography-Mass Spectrometry in Toxicology, Pharmaceutical Press, London, 71–95Google Scholar
  96. 96.
    Wood M, Laloup M, Samyn N, Mar Ramirez FM, De Bruijn EA, Maes RA, de Boeck G (2006) Recent applications of liquid chromatography-mass spectrometry in forensic science. J Chromatogr A 1130: 3–15PubMedCrossRefGoogle Scholar
  97. 97.
    Politi L, Leone F, Morini L, Polettini A (2007) Bioanalytical procedures for determination of conjugates or fatty acid esters of ethanol as markers of ethanol consumption: A review. Anal Biochem 368: 1–16PubMedCrossRefGoogle Scholar
  98. 98.
    Beyer J, Peters FT, Kraemer T, Maurer HH (2007) Detection and validated quantification of toxic alkaloids in human blood plasma — Comparison of LC-APCI-MS with LC-ESI-MS/MS. J Mass Spectrom 42: 621–633PubMedCrossRefGoogle Scholar
  99. 99.
    Mueller CA, Weinmann W, Dresen S, Schreiber A, Gergov M (2005) Development of a multi-target screening analysis for 301 drugs using a QTrap liquid chromatography/tandem mass spectrometry system and automated library searching. Rapid Commun Mass Spectrom 19: 1332–1338PubMedCrossRefGoogle Scholar
  100. 100.
    Sauvage FL, Saint-Marcous F, Duretz B, Deporte D, Lachatre G, Marquet P (2006) Screening of drugs and toxic compounds with liquid chromatography-linear ion trap tandem mass spectrometry. Clin Chem 52: 1735–1742PubMedCrossRefGoogle Scholar
  101. 101.
    Gergov M, Boucher B, Ojanpera I, Vuori E (2001) Toxicological screening of urine for drugs by liquid chromatography/time-of-flight mass spectrometry with automated target library search based on elemental formulas. Rapid Commun Mass Spectrom 15: 521–526PubMedCrossRefGoogle Scholar
  102. 102.
    Ojanpera I, Pelander A, Laks S, Gergov M, Vuori E, Witt M (2005) Application of accurate mass measurement to urine drug screening. J Anal Toxicol 29: 34–40PubMedGoogle Scholar
  103. 103.
    Ojanpera S, Pelander A, Pelzing M, Krebs I, Vuori E, Ojanpera I (2006) Isotopic pattern and accurate mass determination in urine drugs screening by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20: 1161–1167PubMedCrossRefGoogle Scholar
  104. 104.
    Pfleger, K, Maurer, HH, Weber, A (1992) Mass Spectral and GC Data of Drugs, Poisons, Pesticides, Pollutants and their Metabolites. 2nd edn., Wiley-VCH, Weinheim, GermanyGoogle Scholar
  105. 105.
    Nordgren HK, Beck O (2003) Direct screening of urine for MDMA and MDA by liquid chromatography-tandem mass spectrometry. J Anal Toxicol 27: 15–19PubMedGoogle Scholar
  106. 106.
    Nordgren HK, Beck O (2004) Multicomponent screening for drugs of abuse: Direct analysis of urine by LC-MS-MS. Ther Drug Monit 26: 90–97PubMedCrossRefGoogle Scholar
  107. 107.
    Nordgren HK, Holmgren P, Liljeberg P, Eriksson N, Beck 0 (2005) Application of direct urine LC-MS-MS analysis for screening of novel substances in drug abusers. J Anal Toxicol 29: 234–239PubMedGoogle Scholar
  108. 108.
    Gustavsson E, Andersson M, Stephanson N, Beck O (2007) Validation of direct injection trospray LC-MS/MS for confirmation of opiates in urine drug testing. J Mass Spectrom 42: 881–889PubMedCrossRefGoogle Scholar
  109. 109.
    Andersson M, Gustavsson E, Stephanson N, Beck O (2008) Direct injection LC-MS/MS method for identification and quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine in urine drug testing. J Chromatogr B Analyt Technol Biomed Life Sci 861: 22–28PubMedCrossRefGoogle Scholar
  110. 110.
    Bjornstad K, Helander A, Beck O (2008) Development and clinical application of an LC-MS-MS method for mescaline in urine. J Anal Toxicol 32: 227–231PubMedGoogle Scholar
  111. 111.
    Stephanson N, Josefsson M, Kronstrand R, Beck O (2008) Accurate identification and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in urine drug testing: Evaluation of a direct high efficiency liquid chromatographic-mass spectrometric method. J Chromatogr B Analyt Technol Biomed Life Sci 871: 101–108PubMedCrossRefGoogle Scholar
  112. 112.
    Bogusz MJ (1997) Large amounts of drugs may considerably influence the peak areas of their coinjected deuterated analogues measured with APCI-LC-MS. J Anal Toxicol 21:246–247PubMedGoogle Scholar
  113. 113.
    Musshoff F, Madea B, Stuber F, Stamer UM (2006) Enantiomeric determination of tramadol and O-desmethyltramadol by liquid chromatography-mass spectrometry and application to postoperative patients receiving tramadol. J Anal Toxicol 30: 463–467PubMedGoogle Scholar
  114. 114.
    Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F (2007) Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82: 41–47PubMedCrossRefGoogle Scholar
  115. 115.
    Peters FT, Dragan CA, Wilde DR, Meyer MR, Bureik M, Maurer HH (2007) Biotechnological synthesis of drug metabolites using human cytochrome P450 2D6 heterologously expressed in fission yeast exemplified for the designer drug metabolite 4′-hydroxymethyl-α-pyrrolidinobuty-rophenone. Biochem Pharmacol 74: 511–520PubMedCrossRefGoogle Scholar
  116. 116.
    Peters FT, Dragan CA, Kauffels A, Schwaninger AE, Zapp J, Bureik M, Maurer HH (2009) Biotechnological synthesis of the designer drug metabolite 4′-hydroxymethyl-α-pyrrolidino-hexanophenone in fission yeast heterologously expressing human cytochrome P450 2D6 — A versatile alternative to multi-step chemical synthesis. J Anal Toxicol 33: 190–197PubMedGoogle Scholar
  117. 117.
    Peters FT, Dragan CA, Schwaninger AE, Sauer C, Zapp J, Bureik M, Maurer HH (2009) Use of fission yeast heterologously expressing human cytochrome P450 2B6 in biotechnological synthesis of the designer drug metabolite 2-[(1-phenylcyclohexyl)amino]ethanol. Forensic Sci Int 184: 69–73PubMedCrossRefGoogle Scholar
  118. 118.
    Beyer J, Drummer OH, Maurer HH (2009) Analysis of toxic alkaloids in body samples. Forensic Sci Int 185: 1–9PubMedCrossRefGoogle Scholar
  119. 119.
    Peters FT, Schaefer S, Staack RF, Kraemer T, Maurer HH (2003) Screening for and validated quantification of amphetamines and of amphetamine-and piperazine-derived designer drugs in human blood plasma by gas chromatography/mass spectrometry. J Mass Spectrom 38: 659–676PubMedCrossRefGoogle Scholar
  120. 120.
    Sauvage FL, Gaulier JM, Lachatre G, Marquet P (2006) A fully automated turbulent-flow liquid chromatography-tandem mass spectrometry technique for monitoring antidepressants in human serum. Ther Drug Monit 28: 123–130PubMedCrossRefGoogle Scholar
  121. 121.
    Beyer J, Peters FT, Kraemer T, Maurer HH (2007) Detection and validated quantification of herbal phenalkylamines and methcathinone in human blood plasma by LC/MS/MS. J Mass Spectrom 42: 150–160PubMedCrossRefGoogle Scholar
  122. 122.
    Kratzsch C, Weber AA, Peters FT, Kraemer T, Maurer HH (2003) Screening, library-assisted identification and validated quantification of fifteen neuroleptics and three of their metabolites in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. J Mass Spectrom 38: 283–295PubMedCrossRefGoogle Scholar
  123. 123.
    Kratzsch C, Tenberken O, Peters FT, Weber AA, Kraemer T, Maurer HH (2004) Screening, library-assisted identification and validated quantification of 23 benzodiazepines, flumazenil, zaleplone, zolpidem and zopiclone in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. J Mass Spectrom 39: 856–872PubMedCrossRefGoogle Scholar
  124. 124.
    Maurer HH, Kratzsch C, Kraemer T, Peters FT, Weber AA (2002) Screening, library-assisted identification and validated quantification of oral antidiabetics of the sulfonylurea-type in plasma by atmospheric pressure chemical ionization liquid chromatography—mass spectrometry (APCI-LC-MS). J Chromatogr B Analyt Technol Biomed Life Sci 773: 63–73PubMedCrossRefGoogle Scholar
  125. 125.
    Maurer HH, Tenberken O, Kratzsch C, Weber AA, Peters FT (2004) Screening for, library-assisted identification and fully validated quantification of twenty-two β-blockers in blood plasma by liquid chromatography—mass spectrometry with atmospheric pressure chemical ionization. J Chromatogr A 1058: 169–181PubMedGoogle Scholar
  126. 126.
    Laloup M, Ramirez Fernandez MM, de Boeck G, Wood M, Maes V, Samyn N (2005) Validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of 26 benzodiazepines and metabolites, zolpidem and zopiclone, in blood, urine, and hair. J Anal Toxicol 29: 616–626PubMedGoogle Scholar
  127. 127.
    Musshoff F, Trafkowski J, Kuepper U, Madea B (2006) An automated and fully validated LC-MS/MS procedure for the simultaneous determination of 11 opioids used in palliative care, with 5 of their metabolites. J Mass Spectrom 41: 633–640PubMedCrossRefGoogle Scholar
  128. 128.
    Kristoffersen L, Oiestad EL, Opdal MS, Krogh M, Lundanes E, Christophersen AS (2007) Simultaneous determination of 6 β-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhytmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry method development and robustness testing by experimental design. J Chromatogr B Analyt Technol Biomed Life Sci 850: 147–160PubMedCrossRefGoogle Scholar
  129. 129.
    Halcomb SE, Sivilotti ML, Goklaney A, Mullins ME (2005) Pharmacokinetic effects of diphen-hydramine or oxycodone in simulated acetaminophen overdose. Acad Emerg Med 12: 169–172PubMedCrossRefGoogle Scholar
  130. 130.
    Ginsburg BY, Leybell I, Hoffman RS (2005) Comment on “Effect of anticholinergic drugs on the efficacy of activated charcoal”. Clin Toxicol 43: 313Google Scholar
  131. 131.
    Green R, Sitar DS, Tenenbein M (2004) Effect of anticholinergic drugs on the efficacy of activated charcoal. J Toxicol Clin Toxicol 42: 267–272PubMedCrossRefGoogle Scholar
  132. 132.
    Eddleston M, Eyer P, Worek F, Mohamed F, Senarathna L, von Meyer L, Juszczak E, Hittarage A, Azhar S, Dissanayake W, Sheriff MH, Szinicz L, Dawson AH, Buckley NA (2005) Differences between organophosphorus insecticides in human self-poisoning: A prospective cohort study. Lancet 366: 1452–1459PubMedCrossRefGoogle Scholar
  133. 133.
    Evans WE, McLeod HL (2003) Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med 348: 538–549PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2010

Authors and Affiliations

  • Hans H. Maurer
    • 1
  1. 1.Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and ToxicologySaarland University HospitalHomburg (Saar)Germany

Personalised recommendations