Venomous animals: clinical toxinology

  • Julian White
Part of the Experientia Supplementum book series (EXS, volume 100)


Venomous animals occur in numerous phyla and present a great diversity of taxa, toxins, targets, clinical effects and outcomes. Venomous snakes are the most medically significant group globally and may injure >1.25 million humans annually, with up to 100 000 deaths and many more cases with long-term disability. Scorpion sting is the next most important cause of envenoming, but significant morbidity and even deaths occur following envenoming with a wide range of other venomous animals, including spiders, ticks, jellyfish, marine snails, octopuses and fish. Clinical effects vary with species and venom type, including local effects (pain, swelling, sweating, blistering, bleeding, necrosis), general effects (headache, vomiting, abdominal pain, hypertension, hypotension, cardiac arrhythmias and arrest, convulsions, collapse, shock) and specific systemic effects (paralytic neurotoxicity, neuroexcitatory neurotoxicity, myotoxicity, interference with coagulation, haemorrhagic activity, renal toxicity, cardiac toxicity). First aid varies with organism and envenoming type, but few effective first aid methods are recommended, while many inappropriate or frankly dangerous methods are in widespread use. For snakebite, immobilisation of the bitten limb, then the whole patient is the universal method, although pressure immobilisation bandaging is recommended for bites by non-necrotic or haemorrhagic species. Hot water immersion is the most universal method for painful marine stings. Medical treatment includes both general and specific measures, with antivenom being the principal tool in the latter category. However, antivenom is available only for a limited range of species, not for all dangerous species, is in short supply in some areas of highest need, and in many cases, is supported by historical precedent rather than modern controlled trials.


Snake Venom Venom Gland Scorpion Sting Elapid Snake Redback Spider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chippaux JP (1998) Snake-bites: Appraisal of the global situation. Bull WHO 76: 515–524PubMedGoogle Scholar
  2. 2.
    Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ (2008) The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. P LoS Med 5: e218Google Scholar
  3. 3.
    Mion G, Olive F (1997) Les envenimations par vipéridés en Afrique Noire. In: JM Saissy (ed.): Réanimation Tropicale, Arnette, Paris, 349–366Google Scholar
  4. 4.
    Chippaux JP (2005) Ophidian envenomations and emergencies in sub-Saharan Africa. Bull Soc Pathol Exot 98: 263–268PubMedGoogle Scholar
  5. 5.
    Siddique AK, Baquo AH, Eusof A, Zaman K (1991) 1988 Floods in Bangladesh: Pattern of illness and causes of death. J Diarrhoeal Dis Res 9: 310–314PubMedGoogle Scholar
  6. 6.
    Chippaux JP, Goyffon M (2008) Epidemiology of scorpionism: A global appraisal. Acta Trop 107: 71–79PubMedGoogle Scholar
  7. 7.
    Celis A, Gaxiola-Robles R, Sevilla-Godínez E, Orozco Valerio Mde J, Armas J (2007) Trends in mortality from scorpion stings in Mexico, 1979–2003. Rev Panam Salud Publica 21: 373–380PubMedGoogle Scholar
  8. 8.
    Goyffon M, Billiald P (2007) Envenomations VI. Scorpionism in Africa. Med Trop 67: 439–446Google Scholar
  9. 9.
    White J (1995) Clinical toxicology of spiderbite. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 259–329Google Scholar
  10. 10.
    Bristoe WS (1958) The World of Spiders. Collins, London, UK.Google Scholar
  11. 11.
    Vetter RS, Isbister GK (2008) Medical aspects of spider bites. Annu Rev Entomol 53: 409–429PubMedGoogle Scholar
  12. 12.
    Isbister GK, White J (2004) Clinical consequences of spider bites: Recent advances in our understanding. Toxicon 43: 477–492PubMedGoogle Scholar
  13. 13.
    Isbister GK, Gray MR (2002) A prospective study of 750 definite spider bites, with expert spider identification. QJM 95: 723–731PubMedGoogle Scholar
  14. 14.
    Williamson J, Burnett J (1995) Clinical toxicology of marine coelenterate injuries. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 89–115Google Scholar
  15. 15.
    Williamson JA, Fenner PJ, Burnett JW, Rifkin JF (1996) Venomous and Poisonous Marine Animals. Uni NSW Press, Sydney, AustraliaGoogle Scholar
  16. 16.
    Fenner PJ, Williamson JA (1996) Wordwide deaths and severe envenomation from jellyfish stings. Med J Aust 165: 658–661PubMedGoogle Scholar
  17. 17.
    O’Reilly GM, Isbister GK, Lawrie PM, Treston GT, Currie BJ (2001) Prospective study of jellyfish stings from tropical Australia, including the major box jellyfish Chironex fleckeri. Med J Aust 175: 652–655PubMedGoogle Scholar
  18. 18.
    Currie BJ, Jacups SP (2005) Prospective study of Chironex fleckeri and other box jellyfish stings in the “top end” of Australia’s Northern Territory. Med J Aust 183: 631–636PubMedGoogle Scholar
  19. 19.
    Williamson JA, Callanan VI, Hartwick RF (1980) Serious envenomation by the Northern Australian box-jellyfish (Chironex fleckeri). Med J Aust 1: 13–16PubMedGoogle Scholar
  20. 20.
    Williamson J (1995) Clinical toxicology of venomous Scorpaenidae and other selected fish stings. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 141–158Google Scholar
  21. 21.
    White J (2005) Venom. In: R Byard, T Corey, C Henderson, J Payne-James (eds): Encyclopedia of Forensic and Legal Medicine, Academic Press, Burlington, MAGoogle Scholar
  22. 22.
    Mebs D (2002) Venomous and Poisonous Animals. Medpharm, Stuttgart, GermanyGoogle Scholar
  23. 23.
    Chippaux JP, Williams V, White J (1991) Snake venom variability: Methods of study, results and interpretation. Toxicon 29: 1279–1303PubMedGoogle Scholar
  24. 24.
    Williams V, White J (1987) Variation in venom constituents within a single isolated population of peninsula tiger snake (Notechis ater niger). Toxicon 25: 1240–1243PubMedGoogle Scholar
  25. 25.
    Williams V, White J, Schwaner TD, Sparrow A (1988) Variation in venom proteins from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in South Australia. Toxicon 26: 1067–1075PubMedGoogle Scholar
  26. 26.
    Williams V, White J (1990) Variation in venom composition and reactivity in two specimens of yellow-faced whip snake (Demansia psammophis) from the same geographical area. Toxicon 28: 1351–1354PubMedGoogle Scholar
  27. 27.
    White J (1987) Elapid snakes: Venom toxicity and actions. In: J Covacevich, P Davie, J Pearn (eds): Toxic Plants and Animals: A Guide For Australia, Qld Museum, Brisbane, Australia, 369–389Google Scholar
  28. 28.
    White J (1987) Elapid snakes: Aspects of envenomation. In: J Covacevich, P Davie, J Pearn (eds): Toxic Plants and Animals: A Guide For Australia, Qld Museum, Brisbane, Australia, 391–429Google Scholar
  29. 29.
    White J (2004) Overview of venomous snakes of the world. In: R Dart (ed.): Medical Toxicology, Lippincott, Williams & Wilkins, Philadelphia, PA, 1543–1559Google Scholar
  30. 30.
    Ramasamy S, Isbister GK, Seymour JE, Hodgson WC (2005) The in vivo cardiovascular effects of the Irukandji jellyfish (Carukia barnesi) nematocyst venom and a tentacle extract in rats. Toxicol Lett 155: 135–141PubMedGoogle Scholar
  31. 31.
    Isbister GK, Gray MR, Balit CR, Raven RJ, Stokes BJ, Porges K, Tankel AS, Turner E, White J, Fisher MM (2005) Funnel-web spider bite: A systematic review of recorded clinical cases. Med J Aust 182: 407–411PubMedGoogle Scholar
  32. 32.
    Karlsson E (1979) Chemistry of protein toxins in snake venoms. In: CY Lee (ed.): Handbook of Experimental Pharmacology: Snake Venoms, Volume 52, Springer Verlag, Berlin, GermanyGoogle Scholar
  33. 33.
    Gala S, Katelaris CH (1992) Rhabdomyolysis due to redback spider envenomation. Med J Aust 157: 66PubMedGoogle Scholar
  34. 34.
    Fouché R, Lucas P, Bernardin G, Roger PM, Corcelle P, Mattéi M (1997) Latrodectism: A rare cause of rhabdomyolysis. Presse Med 26: 954PubMedGoogle Scholar
  35. 35.
    Cohen J, Bush S (2005) Case report: Compartment syndrome after a suspected black widow spider bite. Ann Emerg Med 45: 414–416PubMedGoogle Scholar
  36. 36.
    Vetter RS, Visscher PK, Camazine S (1999) Mass envenomations by honey bees and wasps. West J Med 170: 223–227PubMedGoogle Scholar
  37. 37.
    Vikrant S, Pandey D, Machhan P, Gupta D, Kaushal SS, Grover N (2005) Wasp envenomation-induced acute renal failure: A report of three cases. Nephrology 10: 548–552PubMedGoogle Scholar
  38. 38.
    Grisotto LS, Mendes GE, Castro I, Baptista MA, Alves VA, Yu L, Burdmann EA (2006) Mechanisms of bee venom-induced acute renal failure. Toxicon 48: 44–54PubMedGoogle Scholar
  39. 39.
    Das RN, Mukherjee K (2008) Asian wasp envenomation and acute renal failure: A report of two cases. McGill J Med 11: 25–28PubMedGoogle Scholar
  40. 40.
    Hutton RA, Warrell DA (1993) Action of snake venom components on the haemostatic system. Blood Rev 7: 176–189PubMedGoogle Scholar
  41. 41.
    White J (2005) Snake venoms and coagulopathy. Toxicon 45: 951–967PubMedGoogle Scholar
  42. 42.
    White J, Duncan B, Wilson C, Williams V, Lloyd J (1992) Coagulopathy following Australian elapid snakebite; A review of 20 cases. In: P Gopalakrishnakone, CK Tan (eds): Recent Advances In Toxinology Research. National University of Singapore, Singapore, 337–344Google Scholar
  43. 43.
    White J, Gilligan JE, Griggs W, Wilson C, Lloyd J (1992) Envenomation by the inland taipan, Oxyuranus microlepidotus, A case report. In: P Gopalakrishnakone, CK Tan (eds): Recent Advances In Toxinology Research. National University of Singapore, Singapore, 716–721Google Scholar
  44. 44.
    Boyer LV, Seifert SA, Clark RF, McNally JT, Williams SR, Nordt SP, Walter FG, Dart RC (1999) Recurrent and persistent coagulopathy following pit viper envenomation. Arch Intern Med 159: 706–710PubMedGoogle Scholar
  45. 45.
    Warrell DA, Davidson NM, Greenwood BM, Ormerod LD, Pope HM, Watkins BJ, Prentice CR (1977) Poisoning by bites of the saw-scaled or carpet viper (Echis carinatus) in Nigeria. QJM 46: 33–62PubMedGoogle Scholar
  46. 46.
    Estrade G, Garnier D, Bernasconi F, Donatien Y (1989) Pulmonary embolism and disseminated intravascular coagulation after being bitten by a Bothrops lanceolatus snake. Apropos of a case. Arch Mal Coeur Vaiss 82: 1903–1905PubMedGoogle Scholar
  47. 47.
    Thomas L, Tyburn B, Bucher B, Pecout F, Ketterle J, Rieux D, Smadja D, Garnier D, Plumelle Y (1995) Prevention of thromboses in human patients with Bothrops lanceolatus envenoming in Martinique: Failure of anticoagulants and efficacy of a monospecific antivenom. Research Group on Snake Bites in Martinique. Am J Trop Med Hyg 52: 419–426PubMedGoogle Scholar
  48. 48.
    Lôbo de Araújo A, Kamiguti A, Bon C (2001) Coagulant and anticoagulant activities of Bothrops lanceolatus (Fer de lance) venom. Toxicon 39: 371–375PubMedGoogle Scholar
  49. 49.
    Thomas L, Chausson N, Uzan J, Kaidomar S, Vignes R, Plumelle Y, Bucher B, Smadja D (2006) Thrombotic stroke following snake bites by the “Fer-de-Lance” Bothrops lanceolatus in Martinique despite antivenom treatment: A report of three recent cases. Toxicon 48: 23–28PubMedGoogle Scholar
  50. 50.
    Malbranque S, Piercecchi-Marti MD, Thomas L, Barbey C, Courcier D, Bucher B, Ridarch A, Smadja D, Warrell DA (2008) Fatal diffuse thrombotic microangiopathy after a bite by the “Fer-de-Lance” pit viper (Bothrops lanceolatus) of Martinique Am J Trop Med Hyg 78: 856–861PubMedGoogle Scholar
  51. 51.
    Arocha-Piñango CL, de Bosch NB, Torres A, Goldstein C, Nouel A, Argüello A, Carvajal Z, Guerrero B, Ojeda A, Rodriguez A (1992) Six new cases of a caterpillar-induced bleeding syndrome. Thromb Haemost 67: 402–407PubMedGoogle Scholar
  52. 52.
    Carrijo-Carvalho LC, Chudzinski-Tavassi AM (2007) The venom of the Lonomia caterpillar: An overview. Toxicon 49: 741–757PubMedGoogle Scholar
  53. 53.
    Devi CS, Reddy CN, Devi SL, Subrahmanyam YR, Bhatt HV, Suvarnakumari G, Murthy DP, Reddy CR (1970) Defibrination syndrome due to scorpion venom poisoning. BMJ 1: 345–347PubMedGoogle Scholar
  54. 54.
    Murthy KR, Zolfagharian H, Medh JD, Kudalkar JA, Yeolekar ME, Pandit SP, Khopkar M, Dave KN, Billimoria FR (1988) Disseminated intravascular coagulation and disturbances in carbohydrate and fat metabolism in acute myocarditis produced by scorpion (Buthus tamulus) venom. Indian J Med Res 87: 318–325PubMedGoogle Scholar
  55. 55.
    Longenecker GL, Longenecker HE Jr (1981) Centruroides sculpturatus venom and platelet reactivity: Possible role in scorpion venom-induced defibrination syndrome. Toxicon 19: 153–157PubMedGoogle Scholar
  56. 56.
    Isbister GK, Hooper MR, Dowsett R, Maw G, Murray L, White J (2006) Collett’s snake (Pséudechis colletti) envenoming in snake handlers. QJM 99: 109–115PubMedGoogle Scholar
  57. 57.
    Kamiguti AS, Laing GD, Lowe GM, Zuzel M, Warrell DA, Theakston RD (1994) Biological properties of the venom of the Papuan black snake (Pseudechis papuanus): Presence of a phospholipase A2 platelet inhibitor. Toxicon 32: 915–925PubMedGoogle Scholar
  58. 58.
    Marsh NA (1994) Snake venoms affecting the haemostatic mechanism — A consideration of their mechanisms, practical applications and biological significance. Blood Coagul Fibrinolysis 5: 399–410PubMedGoogle Scholar
  59. 59.
    Andrews RK, Berndt MC (2000) Snake venom modulators of platelet adhesion receptors and their ligands. Toxicon 38: 775–791PubMedGoogle Scholar
  60. 60.
    Kamiguti AS (2005) Platelets as targets of snake venom metalloproteinases. Toxicon 45: 1041–1049PubMedGoogle Scholar
  61. 61.
    Calvete JJ, Marcinkiewicz C, Monleón D, Esteve V, Celda B, Juárez P, Sanz L (2005) Snake venom disintegrins: Evolution of structure and function. Toxicon 45: 1063–1074PubMedGoogle Scholar
  62. 62.
    Mandal S, Bhattacharyya D (2007) Ability of a small, basic protein isolated from Russell’s viper venom (Daboia russelli russelli) to induce renal tubular necrosis in mice. Toxicon 50: 236–250PubMedGoogle Scholar
  63. 63.
    De Castro I, Burdmann EA, Seguro AC, Yu L (2004) Bothrops venom induces direct renal tubular injury: Role for lipid peroxidation and prevention by antivenom. Toxicon 43: 833–839PubMedGoogle Scholar
  64. 64.
    Chugh KS, Aikat BK, Sharma BK, Dash SC, Mathew MT, Das KC (1975) Acute renal failure following snakebite. Am J Trop Med Hyg 24: 692–697PubMedGoogle Scholar
  65. 65.
    Sitprija V, Boonpucknavig V (1977) The kidney in tropical snakebite. Clin Nephrol 8: 377–383PubMedGoogle Scholar
  66. 66.
    Date A, Shastry JC (1982) Renal ultrastructure in acute tubular necrosis following Russell’s viper envenomation. J Pathol 137: 225–241PubMedGoogle Scholar
  67. 67.
    White J, Fassett R (1983) Acute renal failure and coagulopathy after snakebite. Med J Aust 2: 142–143PubMedGoogle Scholar
  68. 68.
    Tin-Nu-Swe, Tin-Tun, Myint-Lwin, Thein-Than, Tun-Pe, Robertson JI, Leckie BJ, Phillips RE, Warrell DA (1993) Renal ischaemia, transient glomerular leak and acute renal tubular damage in patients envenomed by Russell’s vipers (Daboia russelii siamensis) in Myanmar. Trans R Soc Trop Med Hyg 87: 678–681PubMedGoogle Scholar
  69. 69.
    Pinho FM, Zanetta DM, Burdmann EA (2005) Acute renal failure after Crotalus durissus snakebite: A prospective survey on 100 patients. Kidney Int 67: 659–667PubMedGoogle Scholar
  70. 70.
    Sitprija V (2006) Snakebite nephropathy. Nephrology 11: 442–448PubMedGoogle Scholar
  71. 71.
    Isbister GK, Little M, Cull G, McCoubrie D, Lawton P, Szabo F, Kennedy J, Trethewy C, Luxton G, Brown SG, Currie BJ (2007) Thrombotic microangiopathy from Australian brown snake (Pseudonaja) envenoming. Intern Med J 37: 523–528PubMedGoogle Scholar
  72. 72.
    Athappan G, Balaji MV, Navaneethan U, Thirumalikolundusubramanian P (2008) Acute renal failure in snake envenomation: A large prospective study. Saudi J Kidney Dis Transpl 19: 404–410PubMedGoogle Scholar
  73. 73.
    Schneemann M, Cathomas R, Laidlaw ST, El Nahas AM, Theakston RD, Warrell DA (2004) Life-threatening envenoming by the Saharan horned viper (Cerastes cerastes) causing micro-angiopathic haemolysis, coagulopathy and acute renal failure: Clinical cases and review. QJM 97: 717–727PubMedGoogle Scholar
  74. 74.
    Giordano AR, Vito L, Sardella PJ (2005) Complication of a Portuguese man-of-war envenomation to the foot: A case report. J Foot Ankle Surg 44: 297–300PubMedGoogle Scholar
  75. 75.
    Dall GF, Barclay KL, Knight D (2006) Severe sequelae after stonefish envenomation. Surgeon 4: 384–385PubMedGoogle Scholar
  76. 76.
    Barss P (1984) Wound necrosis caused by the venom of stingrays. Pathological findings and surgical management. Med J Aust 141: 854–855PubMedGoogle Scholar
  77. 77.
    Rocca AF, Moran EA, Lippert FG 3rd (2001) Hyperbaric oxygen therapy in the treatment of soft tissue necrosis resulting from a stingray puncture. Foot Ankle Int 22: 318–323PubMedGoogle Scholar
  78. 78.
    Magalhães KW, Lima C, Piran-Soares AA, Marques EE, Hiruma-Lima CA, Lopes-Ferreira M (2006) Biological and biochemical properties of the Brazilian Potamotrygon stingrays: Potamotrygon cf. scobina and Potamotrygon gr. orbignyi. Toxicon 47: 575–583PubMedGoogle Scholar
  79. 79.
    Pipelzadeh MH, Jalali A, Taraz M, Pourabbas R, Zaremirakabadi A (2007) An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. Toxicon 50: 984–992PubMedGoogle Scholar
  80. 80.
    Hogan CJ, Barbaro KC, Winkel K (2004) Loxoscelism: Old obstacles, new directions. Ann Emerg Med 44: 608–624PubMedGoogle Scholar
  81. 81.
    Tambourgi DV, Paixão-Cavalcante D, Gonçalves de Andrade RM, Fernandes-Pedrosa M de F, Magnoli FC, Paul Morgan B, van den Berg CW (2005) Loxosceles sphingomyelinase induces complement-dependent dermonecrosis, neutrophil infiltration, and endogenous gelatinase expression. J Invest Dermatol 124: 725–731PubMedGoogle Scholar
  82. 82.
    De Oliveira KC, Gonçalves de Andrade RM, Piazza RM, Ferreira JM Jr, van den Berg CW, Tambourgi DV (2005) Variations in Loxosceles spider venom composition and toxicity contribute to the severity of envenomation. Toxicon 45: 421–429PubMedGoogle Scholar
  83. 83.
    Paixão-Cavalcante D, van den Berg CW, Gonçalves-de-Andrade RM, Fernandes-Pedrosa M de F, Okamoto CK, Tambourgi DV (2007) Tetracycline protects against dermonecrosis induced by Loxosceles spider venom. J Invest Dermatol 127: 1410–1418PubMedGoogle Scholar
  84. 84.
    McGlasson DL, Harroff HH, Sutton J, Dick E, Elston DM (2007) Cutaneous and systemic effects of sarying doses of brown recluse spider venom in a rabbit model. Clin Lab Sci 20: 99–105PubMedGoogle Scholar
  85. 85.
    Malta MB, Lira MS, Soares SL, Rocha GC, Knysak I, Martins R, Guizze SP, Santoro ML, Barbaro KC (2008) Toxic activities of Brazilian centipede venoms. Toxicon 52: 255–263PubMedGoogle Scholar
  86. 86.
    Han TS, Teichert RW, Olivera BM, Bulaj G (2008) Conus venoms — A rich source of peptidebased therapeutics. Curr Pharm Des 14: 2462–2479PubMedGoogle Scholar
  87. 87.
    Sutherland SK, Coulter AR, Harris RD (1979) Rationalisation of first-aid measures for elapid snakebite. Lancet 8109: 183–185Google Scholar
  88. 88.
    Sutherland SK, Coulter AR (1981) Early management of bites by the eastern diamondback rattlesnake (Crotalus adamanteus): Studies in monkeys (Macaca fascicularis). Am J Trop Med Hyg 30: 497–500PubMedGoogle Scholar
  89. 89.
    Stewart ME, Greenland S, Hoffman JR (1981) First-aid treatment of poisonous snakebite: Are currently recommended procedures justified? Ann Emerg Med 10: 331–335PubMedGoogle Scholar
  90. 90.
    Pearn J, Morrison J, Charles N, Muir V (1981) First-aid for snake-bite: Efficacy of a constrictive bandage with limb immobilization in the management of human envenomation. Med J Aust 2: 293–295PubMedGoogle Scholar
  91. 91.
    Anker RL, Straffon WG, Loiselle DS, Anker KM (1983) Snakebite. Comparison of three methods designed to delay uptake of ‘mock venom’. Aust Fam Physician 12: 365–368PubMedGoogle Scholar
  92. 92.
    Reitz CJ, Willemse GT, Odendaal MW, Visser JJ (1986) Evaluation of the venom ex apparatus in the initial treatment of puff adder envenomation. A study in rabbits. S Afr Med J 69: 684–686PubMedGoogle Scholar
  93. 93.
    Moorman CT 3rd, Moorman LS, Goldner RD (1992) Snakebite in the tarheel state. Guidelines for first aid, stabilization, and evacuation. NC Med J 53: 141–146Google Scholar
  94. 94.
    Blackman JR, Dillon S (1992) Venomous snakebite: Past, present, and future treatment options. J Am Board Fam Pract 5: 399–405PubMedGoogle Scholar
  95. 95.
    Howarth DM, Southee AE, Whyte IM (1994) Lymphatic flow rates and first-aid in simulated peripheral snake or spider envenomation. Med J Aust 161: 695–700PubMedGoogle Scholar
  96. 96.
    Tun-Pe, Aye-Aye-Myint, Khin-Ei-Han, Thi-Ha, Tin-Nu-Swe (1995) Local compression pads as a first-aid measure for victims of bites by Russell’s viper (Daboia russelii siamensis) in Myanmar. Trans R Soc Trop Med Hyg 89: 293–295PubMedGoogle Scholar
  97. 97.
    Theakston RD (1997) An objective approach to antivenom therapy and assessment of first-aid measures in snake bite. Ann Trop Med Parasitol 91: 857–865PubMedGoogle Scholar
  98. 98.
    Zamudio KR, Hardy DL Sr, Martins M, Greene HW (2000) Fang tip spread, puncture distance, and suction for snake bite. Toxicon 38: 723–728PubMedGoogle Scholar
  99. 99.
    Habib AG, Gebi UI, Onyemelukwe GC (2001) Snake bite in Nigeria, Afr J Med Med Sci 30: 171–178PubMedGoogle Scholar
  100. 100.
    Juckett G, Hancox JG (2002) Venomous snakebites in the United States: Management review and update. Am Fam Physician 65: 1367–1374PubMedGoogle Scholar
  101. 101.
    Bush SP, Green SM, Laack TA, Hayes WK, Cardwell MD, Tanen DA (2004) Pressure immobilization delays mortality and increases intracompartmental pressure after artificial intramuscular rattlesnake envenomation in a porcine model. Ann Emerg Med 44: 599–604PubMedGoogle Scholar
  102. 102.
    Alberts MB, Shalit M, LoGalbo F (2004) Suction for venomous snakebite: A study of “mock venom” extraction in a human model. Ann Emerg Med 43: 181–186PubMedGoogle Scholar
  103. 103.
    Sharma SK, Koirala S, Dahal G, Sah C (2004) Clinico-epidemiological features of snakebite: A study from Eastern Nepal. Trop Doct 34: 20–22PubMedGoogle Scholar
  104. 104.
    Little M (2008) First aid for jellyfish stings: Do we really know what we are doing? Emerg Med Australas 20: 78–80PubMedGoogle Scholar
  105. 105.
    Currie BJ, Canale E, Isbister GK (2008) Effectiveness of pressure-immobilization first aid for snakebite requires further study. Emerg Med Australas 20: 267–270PubMedGoogle Scholar
  106. 106.
    Simpson ID, Tanwar PD, Andrade C, Kochar DK, Norris RL (2008) The Ebbinghaus retention curve: Training does not increase the ability to apply pressure immobilisation in simulated snake bite — Implications for snake bite first aid in the developing world. Trans R Soc Trop Med Hyg 102: 451–459PubMedGoogle Scholar
  107. 107.
    White J (1995) Poisonous and venomous animals — The physician’s view. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 9–26Google Scholar
  108. 108.
    Hawgood BJ (1999) Doctor Albert Calmette 1863–1933: Founder of antivenomous serotherapy and of antituberculous BCG vaccination. Toxicon 37: 1241–1258PubMedGoogle Scholar
  109. 109.
    Chippaux JP, Goyffon M (1998) Venoms, antivenoms and immunotherapy. Toxicon 36: 823–846PubMedGoogle Scholar
  110. 110.
    Theakston RD, Warrell DA, Griffiths E (2003) Report of a WHO workshop on the standardization and control of antivenoms. Toxicon 41: 541–557PubMedGoogle Scholar
  111. 111.
    Nkinin SW, Chippaux JP, Piétin D, Doljansky Y, Trémeau O, Ménez A (1997) Genetic origin of venom variability: Impact on the preparation of antivenin serums. Bull Soc Pathol Exot 90: 277–281PubMedGoogle Scholar
  112. 112.
    Chippaux JP, Goyffon M (1991) Antivenom serotherapy: Its applications, its limitations, its future. Bull Soc Pathol Exot 84: 286–297PubMedGoogle Scholar
  113. 113.
    Ruha AM, Curry SC, Beuhler M, Katz K, Brooks DE, Graeme KA, Wallace K, Gerkin R, Lovecchio F, Wax P, Selden B (2002) Initial postmarketing experience with crotalidae polyvalent immune Fab for treatment of rattlesnake envenomation. Ann Emerg Med 39: 609–615PubMedGoogle Scholar
  114. 114.
    Seifert SA, Boyer LV (2001) Recurrence phenomena after immunoglobulin therapy for snake envenomations: Part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med 37: 189–195PubMedGoogle Scholar
  115. 115.
    Consroe P, Egen NB, Russell FE, Gerrish K, Smith DC, Sidki A, Landon JT (1995) Comparison of a new ovine antigen binding fragment (Fab) antivenin for United States Crotalidae with the commercial antivenin for protection against venom-induced lethality in mice. Am J Trop Med Hyg 53: 507–510PubMedGoogle Scholar
  116. 116.
    Sjostrom L, al-Abdulla IH, Rawat S, Smith DC, Landon J (1994) A comparison of ovine and equine antivenoms. Toxicon. 32: 427–433PubMedGoogle Scholar
  117. 117.
    Cannon R, Ruha AM, Kashani J (2008) Acute hypersensitivity reactions associated with administration of crotalidae polyvalent immune Fab antivenom. Ann Emerg Med 51: 407–411PubMedGoogle Scholar
  118. 118.
    Lavonas EJ, Gerardo CJ, O’Malley G, Arnold TC, Bush SP, Banner W Jr, Steffens M, Kerns WP 2nd (2004) Initial experience with Crotalidae polyvalent immune Fab (ovine) antivenom in the treatment of copperhead snakebite. Ann Emerg Med 43: 200–206PubMedGoogle Scholar
  119. 119.
    Morais JF, de Freitas MC, Yamaguchi IK, dos Santos MC, da Silva WD (1994) Snake antivenoms from hyperimmunized horses: Comparison of the antivenom activity and biological properties of their whole IgG and F(ab’)2 fragments. Toxicon 32: 725–734PubMedGoogle Scholar
  120. 120.
    Otero-Patiño R, Cardoso JL, Higashi HG, Nunez V, Diaz A, Toro MF, Garcia ME, Sierra A, Garcia LF, Moreno AM, Medina MC, Castañeda N, Silva-Diaz JF, Murcia M, Cardenas SY, Dias da Silva WD (1998) A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. The Regional Group on Antivenom Therapy Research (REGATHER). Am J Trop Med Hyg 58: 183–189PubMedGoogle Scholar
  121. 121.
    Otero R, León G, Gutiérrez JM, Rojas G, Toro MF, Barona J, Rodríguez V, Díaz A, Núñez V, Quintana JC, Ayala S, Mosquera D, Conrado LL, Fernández D, Arroyo Y, Paniagua CA, López M, Ospina CE, Alzate C, Fernández J, Meza JJ, Silva JF, Ramírez P, Fabra PE, Ramírez E, Córdoba E, Arrieta AB, Warrell DA, Theakston RD (2006) Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without β-propiolactone, in the treatment of Bothrops asper bites in Colombia. Trans R Soc Trop Med Hyg 100: 1173–1182PubMedGoogle Scholar
  122. 122.
    León G, Rojas G, Lomonte B, Gutiérrez JM (1997) Immunoglobulin G and F(ab’)2 polyvalent antivenoms do not differ in their ability to neutralize hemorrhage, edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom. Toxicon 351627–351637Google Scholar
  123. 123.
    Dos Santos MC, D’Império Lima MR, Furtado GC, Colletto GM, Kipnis TL, Dias da Silva W (1989) Purification of F(ab’)2 anti-snake venom by caprylic acid: A fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Toxicon 27: 297–303PubMedGoogle Scholar
  124. 124.
    Rojas G, Jiménez JM, Gutiérrez JM (1994) Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon 32: 351–363PubMedGoogle Scholar
  125. 125.
    Seddik SS, Malak GA, Helmy MH (2002) Improved purification and yield of the Egyptian snake Cerastes cerastes antitoxin by the use of caprylic acid. J Nat Toxins 11: 323–328PubMedGoogle Scholar
  126. 126.
    Raweerith R, Ratanabanangkoon K (2003) Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography. J Immunol Methods 282: 63–72PubMedGoogle Scholar
  127. 127.
    Chippaux JP, Goyffon M (1983) Producers of antivenom sera. Toxicon 21: 739–752PubMedGoogle Scholar
  128. 128.
    Theakston RD, Warrell DA (1991) Antivenoms: A list of hyperimmune sera currently available for the treatment of envenoming by bites and stings. Toxicon 29: 1419–1470PubMedGoogle Scholar
  129. 129.
    Meier J (1995) Commercially available antivenoms (hyperimmune sera, antivenins, antisera) for antivenom therapy. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 689–721Google Scholar
  130. 130.
    Padilla-Marroquin A (2008) WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. ( Scholar
  131. 131.
    Burnouf T, Terpstra F, Habib G, Seddik S (2007) Assessment of viral inactivation during pH 3.3 pepsin digestion and caprylic acid treatment of antivenoms. Biologicals 35: 329–334PubMedGoogle Scholar
  132. 132.
    Wilde H, Thipkong P, Sitprija V, Chaiyabutr N (1996) Heterologous antisera and antivenins are essential biologicals: Perspectives on a worldwide crisis. Ann Intern Med 125: 233–236PubMedGoogle Scholar
  133. 133.
    al-Asmari AK, al-Abdulla IH, Crouch RG, Smith DC, Sjostrom L (1997) Assessment of an ovine antivenom raised against venom from the desert black cobra (Walterinnesia aegyptia). Toxicon 35: 141–145PubMedGoogle Scholar
  134. 134.
    White J (2002) CSL Antivenom Handbook. CSL Ltd, Melbourne, AustraliaGoogle Scholar
  135. 135.
    Harrison RA, Hasson SS, Harmsen M, Laing GD, Conrath K, Theakston RD (2006) Neutralisation of venom-induced haemorrhage by IgG from camels and Ilamas immunised with viper venom and also by endogenous, non-IgG components in camelid sera. Toxicon 47: 364–368PubMedGoogle Scholar
  136. 136.
    Herrera M, León G, Segura A, Meneses F, Lomonte B, Chippaux JP, Gutiérrez JM (2005) Factors associated with adverse reactions induced by caprylic acid-fractionated whole IgG preparations: Comparison between horse, sheep and camel IgGs. Toxicon 46: 775–781PubMedGoogle Scholar
  137. 137.
    Almeida CM, Kanashiro MM, Rangel Filho FB, Mata MF, Kipnis TL, da Silva WD, (1998) Development of snake antivenom antobodies in chickens and their purification from yolk. Vet Rec 143: 579–584PubMedGoogle Scholar
  138. 138.
    Maya Devi C, Vasantha Bai M, Krishnan LK (2002) Development of viper-venom antibodies in chicken egg yolk and assay of their antigen binding capacity. Toxicon 40: 857–861PubMedGoogle Scholar
  139. 139.
    Sevcik C, Díaz P, D’Suze G (2007) On the presence of antibodies against bovine, equine and poultry immunoglobulins in human IgG preratitions, and its implications on antivenom production. Toxicon 51: 10–16PubMedGoogle Scholar
  140. 140.
    Meenatchisundaram S, Parameswari G, Michael A, Ramalingam S (2008) Neutralization of the pharmacological effects of Cobra and Krait venoms by chicken egg yolk antibodies. Toxicon 52: 221–227PubMedGoogle Scholar
  141. 141.
    Riaño-Umbarila L, Juárez-González VR, Olamendi-Portugal T, Ortíz-León M, Possani LD, Becerril B (2005) A strategy for the generation of specific human antibodies by directed evolution and phage display. An example of a single-chain antibody fragment that neutralizes a major component of scorpion venom. FEBS J 272: 2591–2601PubMedGoogle Scholar
  142. 142.
    Alvarenga LM, Diniz CR, Granier C, Chávez-Olórtegui C (2002) Induction of neutralizing antibodies against Tityus serrulatus scorpion toxins by immunization with a mixture of defined synthetic epitopes. Toxicon 40: 89–95PubMedGoogle Scholar
  143. 143.
    Calderón-Aranda ES, Rivière G, Choumet V, Possani LD, Bon C (1999) Pharmacokinetics of the toxic fraction of Centruroides limpidus limpidus venom in experimentally envenomed rabbits and effects of immunotherapy with specific F(ab’)2. Toxicon 37: 771–782PubMedGoogle Scholar
  144. 144.
    de Almeida DM, Fernandes-Pedrosa MMde F, de Andrade RM, Marcelino JR, Gondo-Higashi H, de Azevedo Ide L, Ho PL, van den Berg C, Tambourgi DV (2008) A new anti-loxoscelic serum produced against recombinant sphingomyelinase D: Results of preclinical trials. Am J Trop Med Hyg 79: 463–470PubMedGoogle Scholar
  145. 145.
    White J (1998) Envenoming and antivenom use in Australia. Toxicon 36: 1483–1492PubMedGoogle Scholar
  146. 146.
    Chaves F, Loría GD, Salazar A, Gutiérrez JM (2003) Intramuscular administration of antivenoms in experimental envenomation by Bothrops asper: Comparison between Fab and IgG. Toxicon 41: 237–244PubMedGoogle Scholar
  147. 147.
    Wiener S (1961) Red back spider bite in Australia: An analysis of 167 cases. Med J Aust 48: 44–49PubMedGoogle Scholar
  148. 148.
    Sutherland SK, Trinca JC (1978) Survey of 2144 cases of red-back spider bites: Australia and New Zealand, 1963–1976. Med J Aust 2: 620–623PubMedGoogle Scholar
  149. 149.
    Byrne GC, Pemberton PJ (1983) Red-back spider (Latrodectus mactans hasselti) envenomation in a neonate. Med J Aust 2: 665–666PubMedGoogle Scholar
  150. 150.
    White J, Harbord M (1985) Latrodectism as mimic. Med J Aust 142: 75PubMedGoogle Scholar
  151. 151.
    Jelinek GA, Banham ND, Dunjey SJ (1989) Red-back spider-bites at Fremantle Hospital, 1982–1987. Med J Aust 150: 693–695PubMedGoogle Scholar
  152. 152.
    Sutherland SK (1992) Antivenom use in Australia. Premedication, adverse reactions and the use of venom detection kits. Med J Aust 157: 734–739PubMedGoogle Scholar
  153. 153.
    Mead HJ, Jelinek GA (1993) Red-back spider bites to Perth children, 1979–1988. J Paediatr Child Health 29: 305–308PubMedGoogle Scholar
  154. 154.
    Pincus DR (1994) Response to antivenom 14 days after red-back spider bite. Med J Aust 161: 226PubMedGoogle Scholar
  155. 155.
    Banham ND, Jelinek GA, Finch PM (1994) Late treatment with antivenom in prolonged red-back spider envenomation. Med J Aust 161: 379–381PubMedGoogle Scholar
  156. 156.
    Wells CL, Spring WJ (1996) Delayed but effective treatment of red-back spider envenomation. Med J Aust 164: 447PubMedGoogle Scholar
  157. 157.
    Couser GA, Wilkes GJ (1997) A red-back spider bite in a lymphoedematous arm. Med J Aust 166: 587–588PubMedGoogle Scholar
  158. 158.
    Ellis RM, Sprivulis PC, Jelinek GA, Banham ND, Wood SV, Wilkes GJ, Siegmund A, Roberts BL (2005) A double-blind, randomized trial of intravenous versus intramuscular antivenom for red-back spider envenoming. Emerg Med Australas 17: 152–156PubMedGoogle Scholar
  159. 159.
    Isbister GK, Gray MR (2003) Latrodectism: A prospective cohort study of bites by formally identified redback spiders. Med J Aust 179: 88–91PubMedGoogle Scholar
  160. 160.
    Isbister GK (2007) Safety of i.v. administration of redback spider antivenom. Intern Med J 37: 820–822PubMedGoogle Scholar
  161. 161.
    Brown SG, Isbister GK, Stokes B (2007) Route of administration of redback spider bite antivenom: Determining clinician beliefs to facilitate Bayesian analysis of a clinical trial. Emerg Med Australas 19: 458–463PubMedGoogle Scholar
  162. 162.
    Isbister GK, Brown SG, Miller M, Tankel A, Macdonald E, Stokes B, Ellis R, Nagree Y, Wilkes GJ, James R, Short A, Holdgate A (2008) A randomised controlled trial of intramuscular versus intravenous antivenom for latrodectism — The RAVE study. QJM 101: 557–565PubMedGoogle Scholar
  163. 163.
    White J, Dart RC (2007) Snakebite: A Brief Medical Guide. StirlingGoogle Scholar
  164. 164.
    Theakston RD, Lloyd-Jones MJ, Reid HA (1977) Micro-ELISA for detecting and assaying snake venom and venom-antibody. Lancet 8039: 639–641Google Scholar
  165. 165.
    Theakston RD, Reid HA (1979) Enzyme-linked immunosorbent assay (ELISA) in assessing antivenom potency. Toxicon 17: 511–515PubMedGoogle Scholar
  166. 166.
    Theakston RD, Pugh RN, Reid HA (1981) Enzyme-linked immunosorbent assay of venom-antibodies in human victims of snake bite. J Trop Med Hyg 84: 109–112PubMedGoogle Scholar
  167. 167.
    Theakston RD, Reid HA, Larrick JW, Kaplan J, Yost JA (1981) Snake venom antibodies in Ecuadorian Indians. J Trop Med Hyg 84: 199–202PubMedGoogle Scholar
  168. 168.
    Theakston RD (1983) The application of immunoassay techniques, including enzyme-linked immunosorbent assay (ELISA), to snake venom research. Toxicon 21: 341–352PubMedGoogle Scholar
  169. 169.
    Dhaliwal JS, Lim TW, Sukumaran KD (1983) A double antibody sandwich micro-ELISA kit for the rapid diagnosis of snake bite. Southeast Asian J Trop Med Public Health 14: 367–373PubMedGoogle Scholar
  170. 170.
    Rodriguez-Acosta A, Uzcategui W, Azuaje R, Giron ME, Aguilar I (1998) ELISA assays for the detection of Bothrops lanceolatus venom in envenomed patient plasmas. Roum Arch Microbiol Immunol 57: 271–278PubMedGoogle Scholar
  171. 171.
    Selvanayagam ZE, Gnanavendhan SG, Ganesh KA, Rajagopal D, Rao PV (1999) ELISA for the detection of venoms from four medically important snakes of India. Toxicon 37: 757–770PubMedGoogle Scholar
  172. 172.
    Khow O, Wongtongkam N, Pakmanee N, Omori-Satoh T, Sitprija V (1999) Development of reversed passive latex agglutination for detection of Thai cobra (Naja kaouthia) venom. J Nat Toxins 8: 213–220PubMedGoogle Scholar
  173. 173.
    Dong le V, Quyen le K, Eng KH, Gopalakrishnakone P (2003) Immunogenicity of venoms from four common snakes in the South of Vietnam and development of ELISA kit for venom detection. J Immunol Methods 282: 13–31PubMedGoogle Scholar
  174. 174.
    Dong le V, Eng KH, Quyen le K, Gopalakrishnakone P (2004) Optical immunoassay for snake venom detection. Biosens Bioelectron 19: 1285–1294PubMedGoogle Scholar
  175. 175.
    Chase P, Boyer-Hassen L, McNally J, Vazquez HL, Theodorou AA, Walter FG, Alagon A (2009) Serum levels and urine detection of Centruroides sculpturatus venom in significantly envenomated patients. Clin Tox 47: 24–28Google Scholar
  176. 176.
    Chandler HM, Hurrell JG (1982) A new enzyme immunoassay system suitable for field use and its application in a snake venom detection kit. Clin Chim Acta 121: 225–230PubMedGoogle Scholar
  177. 177.
    Hurrell JG, Chandler HW (1982) Capillary enzyme immunoassay field kits for the detection of snake venom in clinical specimens: A review of two years’ use. Med J Aust 2: 236–237PubMedGoogle Scholar
  178. 178.
    Marshall LR, Herrmann RP (1984) Cross-reactivity of bardick snake venom with death adder antivenom. Med J Aust 140: 541–542PubMedGoogle Scholar
  179. 179.
    White J, Williams V, Passehl JH (1987) The five-ringed brown snake, Pseudonaja modesta (Gunther): Report of a bite and comments on its venom. Med J Aust 147: 603–605PubMedGoogle Scholar
  180. 180.
    Williams V, White J (1990) Variation in venom composition and reactivity in two specimens of yellow-faced whip snake (Demansia psammophis) from the same geographical area. Toxicon 28: 1351–1354PubMedGoogle Scholar
  181. 181.
    Pearn J, McGuire B, McGuire L, Richardson P (2000) The envenomation syndrome caused by the Australian red-bellied black snake Pseudechis porphyriacus. Toxicon 38: 1715–1729PubMedGoogle Scholar
  182. 182.
    Currie BJ (2004) Snakebite in Australia: The role of the venom detection kit. Emerg Med Australas 16: 384–386PubMedGoogle Scholar
  183. 183.
    Jelinek GA, Tweed C, Lynch D, Celenza T, Bush B, Michalopoulos N (2004) Cross reactivity between venomous, midly venomous, and non-venomous snake venoms with the Common-wealth Serum Laboratories venom detection kit. Emerg Med Australas 16: 459–464PubMedGoogle Scholar
  184. 184.
    O’Leary MA, Isbister GK, Schneider JJ, Brown SG, Currie BJ (2006) Enzyme immunoassays in brown snake (Pseudonaja spp.) envenoming: Detecting venom, antivenom and venom-antivenom complexes. Toxicon 48: 4–11PubMedGoogle Scholar
  185. 185.
    Steuten J, Winkel K, Carroll T, Williamson NA, Ignjatovic V, Fung K, Purcell AW, Fry BG (2007) The molecular basis of cross-reactivity in the Australian snake venom detection kit (SVDK). Toxicon 50: 1041–1052PubMedGoogle Scholar
  186. 186.
    Cupo P, Azevedo-Marques MM, de Menezes JB, Hering SE (1991) Immediate hypersensitivity reactions after intravenous use of antivenin sera: Prognostic value of intradermal sensitivity tests. Rev Inst Med Trop Sao Paulo 33: 115–122PubMedGoogle Scholar
  187. 187.
    León G, Segura A, Herrera M, Otero R, França FO, Barbaro KC, Cardoso JL, Wen FH, de Medeiros CR, Prado JC, Malaque CM, Lomonte B, Gutiérrez JM (2008) Human heterophilic antibodies against equine immunoglobulins: Assessment of their role in the early adverse reactions to antivenom administration. Trans R Soc Trop Med Hyg 102: 1115–1119PubMedGoogle Scholar
  188. 188.
    Stewart CS, MacKenzie CR, Hall JC (2007) Isolation, characterization and pentamerization of α-cobrotoxin specific single-domain antibodies from a naïve phage display library: Preliminary findings for antivenom development. Toxicon 49: 699–709PubMedGoogle Scholar
  189. 189.
    García M, Monge M, León G, Lizano S, Segura E, Solano G, Rojas G, Gutiérrez JM (2002) Effect of preservatives on IgG aggregation, complement-activating effect and hypotensive activity of horse polyvalent antivenom used in snakebite envenomation. Biologicals 30: 143–151PubMedGoogle Scholar
  190. 190.
    Isbister GK, Brown SG, MacDonald E, White J, Currie BJ (2008) Current use of Australian snake antivenoms and frequency of immediate-type hypersensitivity reactions and anaphylaxis. Med J Aust 188: 473–476PubMedGoogle Scholar
  191. 191.
    Warrell DA (1999) WHO/SEARO Guidelines for the Clinical Management of snake bites in the Southeast Asian region. South East Asian J Trop Med Public Health 30 Suppl 1: 1–84Google Scholar
  192. 192.
    Malasit P, Warrell DA, Chanthavanich P, Viravan C, Mongkolsapaya J, Singhthong B, Supich C (1986) Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. Br Med J Clin Res Ed 29217–29220Google Scholar
  193. 193.
    Sheikh A, Shehata YA, Brown SG, Simons FE (2009) Adrenaline for the treatment of anaphylaxis: Cochrane systematic review. Allergy 64: 204–212PubMedGoogle Scholar
  194. 194.
    Fan HW, Marcopito LF, Cardoso JL, França FO, Malaque CM, Ferrari RA, Theakston RD, Warrell DA (1999) Sequential randomised and double blind trial of promethazine prophylaxis against early anaphylactic reactions to antivenom for bothrops snake bites. BMJ 318: 1451–1452PubMedGoogle Scholar
  195. 195.
    Isbister GK, Brown SG, MacDonald E, White J, Currie BJ (2008) Current use of Australian snake antivenoms and frequency of immediate-type hypersensitivity reactions and anaphylaxis. Med J Aust 188: 473–476PubMedGoogle Scholar
  196. 196.
    Watt G, Theakston RD, Hayes CG, Yambao ML, Sangalang R, Ranoa CP, Alquizalas E, Warrell DA (1986) Positive response to edrophonium in patients with neurotoxic envenoming by cobras (Naja naja philippinensis). A placebo-controlled study. N Engl J Med 315: 1444–1448PubMedGoogle Scholar
  197. 197.
    Currie B, Fitzmaurice M, Oakley J (1988) Resolution of neurotoxicity with anticholinesterase therapy in death-adder envenomation. Med J Aust 148: 522–525PubMedGoogle Scholar
  198. 198.
    Lalloo DG, Trevett AJ, Black J, Mapao J, Saweri A, Naraqi S, Owens D, Kamiguti AS, Hutton RA, Theakston RD, Warrell DA (1996) Neurotoxicity, anticoagulant activity and evidence of rhabdomyolysis in patients bitten by death adders (Acanthophis sp.) in southern Papua New Guinea. QJM 89: 25–35PubMedGoogle Scholar
  199. 199.
    Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH, Theakston RD, Warrell DA (1995) Failure of 3,4-diaminopyridine and edrophonium to produce significant clinical benefit in neurotoxicity following the bite of Papuan taipan (Oxyuranus scutellatus canni). Trans R Soc Trop Med Hyg 89: 444–446PubMedGoogle Scholar
  200. 200.
    Bawaskar HS, Bawaskar PH (1986) Prazosin in management of cardiovascular manifestions of scorpion sting. Lancet 8479: 510–511Google Scholar
  201. 201.
    Bawaskar HS, Bawaskar PH (2000) Prazosin therapy and scorpion envenomation. J Assoc Physicians India 48: 1175–1180PubMedGoogle Scholar
  202. 202.
    Biswal N, Bashir RA, Murmu UC, Mathai B, Balachander J, Srinivasan S (2006) Outcome of scorpion sting envenomation after a protocol guided therapy. Indian J Pediatr 73: 577–582PubMedGoogle Scholar
  203. 203.
    Gupta V (2006) Prazosin: A pharmacological antidote for scorpion envenomation. J Trop Pediatr 52: 150–151PubMedGoogle Scholar
  204. 204.
    Bawaskar HS, Bawaskar PH (2007) Utility of scorpion antivenin vs prazosin in the management of severe Mesobuthus tamulus (Indian red scorpion) envenoming at rural setting. J Assoc Physicians India 55: 14–21PubMedGoogle Scholar
  205. 205.
    Yildizdas D, Yilmaz HL, Erdem S (2008) Treatment of cardiogenic pulmonary oedema by helmet-delivered non-invasive pressure support ventilation in children with scorpion sting envenomation. Ann Acad Med Singapore 37: 230–234PubMedGoogle Scholar
  206. 206.
    al-Asmari AK, al-Seif AA, Hassen MA, Abdulmaksood NA (2008) Role of prazosin on cardiovascular manifestations and pulmonary edema following severe scorpion stings in Saudi Arabia. Saudi Med J 29: 299–302PubMedGoogle Scholar
  207. 207.
    Ramasamy S, Isbister GK, Seymour JE, Hodgson WC (2005) The in vivo cardiovascular effects of the Irukan dji jellyfish (Carukia barnesi) nematocyst venom and a tentacle extract in rats. Toxicol Lett 155: 135–141PubMedGoogle Scholar
  208. 208.
    Winter KL, Isbister GK, Schneider JJ, Konstantakopoulos N, Seymour JE, Hodgson WC (2008) An examination of the cardiovascular effects of an ‘Irukandji’ jellyfish, Alatina nr mordens. Toxicol Lett 179: 118–123PubMedGoogle Scholar
  209. 209.
    Ramasamy S, Isbister GK, Seymour JE, Hodgson WC (2005) Pharmacologically distinct cardiovascular effects of box jellyfish (Chironex fleckeri) venom and a tentacle-only extract in rats. Toxicol Lett 155: 219–226PubMedGoogle Scholar
  210. 210.
    Ramasamy S, Isbister GK, Seymour JE, Hodgson WC (2005) The in vivo cardiovascular effects of an Australasian box jellyfish (Chiropsalmus sp.) venom in rats. Toxicon 45: 321–327PubMedGoogle Scholar
  211. 211.
    White J (1987) Elapid snakes: Management of bites. In: J Covacevich, P Davie, J Pearn (eds): Toxic Plants and Animals: A Guide For Australia, Qld Museum, Brisbane, Australia, 431–457Google Scholar
  212. 212.
    Little M, Mulcahy RF (1998) A year’s experience of Irukandji envenomation in far north Queensland. Med J Aust 169: 638–641PubMedGoogle Scholar
  213. 213.
    Prentice O, Fernandez WG, Luyber TJ, McMonicle TL, Simmons MD (2008) Stonefish envenomation. Am J Emerg Med 26: 972PubMedGoogle Scholar
  214. 214.
    Grandcolas N, Galéa J, Ananda R, Rakotoson R, D’Andréa C, Harms JD, Staikowsky F (2008) Stonefish stings: Difficult analgesia and notable risk of complications. Presse Med 37: 395–400PubMedGoogle Scholar
  215. 215.
    de Andrade JG, Pinto RN, de Andrade AL, Martelli CM, Zicker F (1989) Bacteriologic study of abscesses caused by bites of snakes of the genus. Bothrops. Rev Inst Med Trop Sao Paulo 31: 363–367Google Scholar
  216. 216.
    Nishioka Sde A, Silveira PV (1992) A clinical and epidemiologic study of 292 cases of lanceheaded viper bite in a Brazilian teaching hospital. Am J Trop Med Hyg 47: 805–810Google Scholar
  217. 217.
    Jorge MT, Ribeiro LA, da Silva ML, Kusano EJ, de Mendonça JS (1994) Microbiological studies of abscesses complicating Bothrops snakebite in humans: A prospective study. Toxicon 32: 743–748PubMedGoogle Scholar
  218. 218.
    Jorge MT, Malaque C, Ribeiro LA, Fan HW, Cardoso JL, Nishioka SA, Sano-Martins IS, França FO, Kamiguti AS, Theakston RD, Warrell DA (2004) Failure of chloramphenicol prophylaxis to reduce the frequency of abscess formation as a complication of envenoming by Bothrops snakes in Brazil: A double-blind randomized controlled trial. Trans R Soc Trop Med Hyg 98: 529–534PubMedGoogle Scholar
  219. 219.
    Rodríguez Acosta A, Uzcategui W, Azuaje R, Aguilar I, Girón ME (2000) Analisis clínico y epidemiológico de los accidentes por mordeduras de serpientes del género Bothrops en Venezuela [A clinical and epidemiological analysis of accidental bites by snakes of the genus Bothrops in Venezuela.]. Rev Cubana Med Trop 52: 90–94PubMedGoogle Scholar
  220. 220.
    Habib AG (2003) Tetanus complicating snakebite in northern Nigeria: Clinical presentation and public health implications. Acta Trop 85: 87–91PubMedGoogle Scholar
  221. 221.
    Ehui E, Kra O, Ouattara I, Tanon A, Kassi A, Eholié S, Bissagnéné E, Kadio A (2007) Generalized tetanus complicating a traditional medicine applied for snakebite. Bull Soc Pathol Exot 100: 184–185PubMedGoogle Scholar
  222. 222.
    Nazim MH, Gupta S, Hashmi S, Zuberi J, Wilson A, Roberts L, Karimi K (2008) Retrospective review of snake bite victims. WV Med J 104: 30–34Google Scholar
  223. 223.
    Brown TP (2005) Diagnosis and management of injuries from dangerous marine life. Med GenMed 7: 5Google Scholar
  224. 224.
    Murphey DK, Septimus EJ, Waagner DC (1992) Catfish-related injury and infection: Report of two cases and review of the literature. Clin Infect Dis 14: 689–693PubMedGoogle Scholar
  225. 225.
    Warrell DA (1995) Clinical toxicology of snakebite in Africa and the Middle East/Arabian Peninsula. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 433–492Google Scholar
  226. 226.
    Warrell DA (1995) Clinical toxicology of snakebite in Asia. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 493–594Google Scholar
  227. 227.
    Wilson DC, King LE Jr (1990) Spiders and spider bites. Dermatol Clin 8: 277–286PubMedGoogle Scholar
  228. 228.
    Futrell JM (1992) Loxoscelism. Am J Med Sci 304: 261–267PubMedGoogle Scholar
  229. 229.
    Leach J, Bassichis B, Itani K (2004) Brown recluse spider bites to the head: Three cases and a review. Ear Nose Throat J 83: 465–470PubMedGoogle Scholar
  230. 230.
    Acott C, Meier J (1995) Clinical toxicology of venomous stingray injuries. In: J Meier, J White (eds): Handbook of Clinical Toxicology of Animal Venoms and Poisons, CRC Press, Boca Raton, FL, 135–140Google Scholar
  231. 231.
    Fry BG, Wüster W (2004) Assembling an arsenal: Origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 21: 870–883PubMedGoogle Scholar
  232. 232.
    Jackson K (2007) The evolution of venom-conducting fangs: Insights from developmental biology. Toxicon 49: 975–981PubMedGoogle Scholar
  233. 233.
    Weinstein SA, Kardong KV (1994) Properties of Duvernoy’s secretions from opisthoglyphous and aglyphous colubrid snakes. Toxicon 32: 1161–1185PubMedGoogle Scholar
  234. 234.
    Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SF, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E (2006) Early evolution of the venom system in lizards and snakes. Nature 439: 584–588PubMedGoogle Scholar
  235. 235.
    Tu MC, Wang HY, Tsai MP, Toda M, Lee WJ, Zhang FJ, Ota H (2000) Phylogeny, taxonomy, and biogeography of the oriental pitvipers of the genus trimeresurus (reptilia: viperidae: crotalinae): A molecular perspective. Zool Sci 17: 1147–1157PubMedGoogle Scholar
  236. 236.
    Malhotra A, Thorpe RS (2004) A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pitvipers (Trimeresurus and Ovophis). Mol Phylogenet Evol 32: 83–100PubMedGoogle Scholar
  237. 237.
    Sanders KL, Malhotra A, Thorpe RS (2004) Ecological diversification in a group of Indomalayan pitvipers (Trimeresurus): Convergence in taxonomically important traits has implications for species identification. J Evol Biol 17: 721–731PubMedGoogle Scholar
  238. 238.
    Radmanesh M (1990) Clinical study of Hemiscorpion lepturus in Iran. J Trop Med Hyg 93: 327–332PubMedGoogle Scholar
  239. 239.
    Radmanesh M (1998) Cutaneous manifestations of the Hemiscorpius lepturus sting: A clinical study. Int J Dermatol 37: 500–507PubMedGoogle Scholar
  240. 240.
    Pipelzadeh MH, Jalali A, Taraz M, Pourabbas R, Zaremirakabadi A (2007) An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. Toxicon 50: 984–992PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2010

Authors and Affiliations

  • Julian White
    • 1
  1. 1.Toxinology DepartmentWomen’s and Children’s HospitalNorth AdelaideAustralia

Personalised recommendations