Advertisement

Toxic plants: a chemist’s perspective

  • Bryan A. Hanson
Part of the Experientia Supplementum book series (EXS, volume 100)

Abstract

Chemistry has long been an integral part of toxicology, as the two fields originated in much the same way: the investigation of plants with interesting properties. In this chapter I review the role that chemistry has played in understanding toxic and medicinal plants. After some introductory remarks, three broad areas are addressed: the role of natural products in understanding plant taxonomy and evolution, recent developments in chemical synthesis, especially efforts to discover and efficiently synthesize novel structures based upon naturally occurring toxins, and finally, developments in the new field of systems toxicology, which seeks to integrate all aspects of an organism’s response to toxic insult.

Keywords

Endophytic Fungus Chemical Space Aristolochic Acid Pyrrolizidine Alkaloid Toxic Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobi J (1979) Paracelsus: Selected Writings. Princeton University Press, Bollingen Series XXVIII, Princeton, NJGoogle Scholar
  2. 2.
    Ball P (2006) The Devil’s Doctor: Paracelsus and the World of Renaissance Magic and Science. Farrar, Straus and Giroux, New York, NYGoogle Scholar
  3. 3.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70: 461–477PubMedGoogle Scholar
  4. 4.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67: 2141–2153PubMedGoogle Scholar
  5. 5.
    Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13: 894–901PubMedGoogle Scholar
  6. 6.
    Firn RD, Jones CG (2003) Natural products — A simple model to explain chemical diversity. Nat Prod Rep 20: 382–391PubMedGoogle Scholar
  7. 7.
    Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69: 509–526PubMedGoogle Scholar
  8. 8.
    Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: A review. Appl Biochem Microbiol 44: 136–142Google Scholar
  9. 9.
    Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67: 257–268PubMedGoogle Scholar
  10. 10.
    Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23: 753–771PubMedGoogle Scholar
  11. 11.
    Firáková S, Sturdíková M, Múcková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62: 251–257Google Scholar
  12. 12.
    Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan Yew of Nepal. Planta Med 67: 374–376PubMedGoogle Scholar
  13. 13.
    Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus-brevifolia. J Nat Prod 58: 1315–1324PubMedGoogle Scholar
  14. 14.
    Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44: 203–209Google Scholar
  15. 15.
    Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72: 2–7PubMedGoogle Scholar
  16. 16.
    Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69: 1121–1124PubMedGoogle Scholar
  17. 17.
    Kusari S, Lamshoft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71: 159–162PubMedGoogle Scholar
  18. 18.
    Frohne D, Pfänder HJ (2005) Poisonous Plants. A Handbook for Doctors, Pharmacists, Toxicologists, Biologists and Veterinarians, 2nd edn. Timber Press, Portland, ORGoogle Scholar
  19. 19.
    Nelson LS, Shih RD, Balick MJ (2007) Handbook of Poisonous and Injurious Plants, 2nd edn. The New York Botanical Garden, Springer, New York, NYGoogle Scholar
  20. 20.
    Tracy TS, Kingston RL (2007) Herbal Products: Toxicology and Clinical Pharmacology, 2nd edn. Humana Press, Totowa, NJGoogle Scholar
  21. 21.
    Simpson MG (2006) Plant Systematics. Elsevier Academic Press, Burlington, MAGoogle Scholar
  22. 22.
    Johns T (1990) With Bitter Herbs They Shall Eat It: Chemical Ecology and the Origins of Human Diet and Medicine. University of Arizona Press, Tucson, AZGoogle Scholar
  23. 23.
    Sertürner FWA (1805) Darstellung der reinen Mohnsäure (Opiumsäure); nebst einer chemischen Unterschuchung des Opiums, mit vorzüglicher Hinsicht auf einen darin neu entdeckten Stoff. J Pharm Ärzte Apoth Chem 14: 47–93Google Scholar
  24. 24.
    Hesse M (2002) Alkaloids: Nature’s Curse or Blessing? Wiley-VCH, Weinheim, GermanyGoogle Scholar
  25. 25.
    De Candolle AP (1804) Essai sur les propriétés des plantes, comparées avec leur formes extérieures et leur classification naturelle. Méquignon, Paris.Google Scholar
  26. 26.
    Abbott HC (1896) Certain chemical constituents of plants considered in relation to their morphology and evolution. Botanical Gazette 11: 270–272Google Scholar
  27. 27.
    Greshoff M (1909) Phytochemical Investigations at Kew. Bulletin of Miscellaneous Information, No. 10, 397–418Google Scholar
  28. 28.
    Reynolds T (2007) The evolution of chemosystematics. Phytochemistry 68: 2887–2895PubMedGoogle Scholar
  29. 29.
    Harborne JB, Turner BL (1984) Plant Chemosystematics. Academic Press, Orlando, FLGoogle Scholar
  30. 30.
    Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linn Soc 80: 91–124Google Scholar
  31. 31.
    Bremer B, Bremer K, Chase MW, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Fay MF, Goldblatt P, Judd WS, Kallersjo M (2003) An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141: 399–436Google Scholar
  32. 32.
    Stevens PF (2001) Angiosperm Phylogeny Website, Version 9, June 2008 (http://www.mobot.org/MOBOT/research/APWeb/)Google Scholar
  33. 33.
    Zomlefer W (1994) Guide to Flowering Plant Families. University of North Carolina Press, NCGoogle Scholar
  34. 34.
    Herbert RB (1981) The Biosynthesis of Secondary Metabolites. Chapman and Hall, LondonGoogle Scholar
  35. 35.
    Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 3–19PubMedGoogle Scholar
  36. 36.
    Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: Mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem System Ecol 31: 897–917Google Scholar
  37. 37.
    Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66: 2500–2520Google Scholar
  38. 38.
    Fu PP, Xia QS, Chou MW, Lin G (2007) Detection, hepatotoxicity, and tumorigenicity of pyrrolizidine alkaloids in Chinese herbal plants and herbal dietary supplements. J Food Drug Anal 15: 400–415Google Scholar
  39. 39.
    Mei N, Guo L, Fu PP, Heflich RH, Chen T (2005) Mutagenicity of comfrey (Symphytum officinale) in rat liver. Br J Cancer 92: 873–875PubMedGoogle Scholar
  40. 40.
    Edgar JA, Roeder EL, Molyneux RJ (2002) Honey from plants containing pyrrolizidine alkaloids: A potential threal to health. J Agric Food Chem 50: 2719–2730PubMedGoogle Scholar
  41. 41.
    Steenkamp V, Stewart MJ, Zuckerman M (2000) Clinical and analytical aspects of pyrrolizidine poisoning caused by South African traditional medicines. Ther Drug Monit 22: 302–306PubMedGoogle Scholar
  42. 42.
    Fu PP, Xia QS, Lin G, Chou MW (2004) Pyrrolizidine alkaloids — Genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36: 1–55PubMedGoogle Scholar
  43. 43.
    Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8: 95–116PubMedGoogle Scholar
  44. 44.
    Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16: 2772–2784PubMedGoogle Scholar
  45. 45.
    Ober D, Harms R, Witte L, Hartmann T (2003) Molecular evolution by change of function — Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the EIF5A precursor protein. J Biol Chem 278: 12805–12812PubMedGoogle Scholar
  46. 46.
    Ober D (2005) Seeing double: Gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10: 444–449PubMedGoogle Scholar
  47. 47.
    Stafford HA (1994) Anthocyanins and betalains — Evolution of the mutually exclusive pathways. Plant Science 101: 91–98Google Scholar
  48. 48.
    Clement JS, Mabry TJ, Wyler H, Drieding AS (1993) Chemical review and evolutionary significance of the betalains. In: TJ Mabry, HD Behnke (eds): Caryophyllales: Evolution and Systematics, Springer-Verlag, Berlin, 247–261Google Scholar
  49. 49.
    Garfield S (2001) Mauve: How One Man Invented a Color that Changed the World. W.W. Norton & Company, New York, NYGoogle Scholar
  50. 50.
    Cornforth JW (1994) The trouble with synthesis. Aldrichim Acta 27: 71–77Google Scholar
  51. 51.
    Nicolaou KC (2009) Inspirations, discoveries, and future perspectives in total synthesis. J Org Chem 74: 951–972PubMedGoogle Scholar
  52. 52.
    Nicolaou KC (2005) Joys of molecules. 1. Campaigns in total synthesis. J Org Chem 70: 7007–7027PubMedGoogle Scholar
  53. 53.
    Nicolaou KC (2005) Joys of molecules. 2. Endeavors, in chemical biology and medicinal chemistry. J Med Chem 48: 5613–5638PubMedGoogle Scholar
  54. 54.
    Nicolaou KC, Snyder SA (2005) Chasing molecules that were never there: Misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed 44: 1012–1044Google Scholar
  55. 55.
    Woodward RB, Doering WE (1944) The total synthesis of quinine. J Am Chem Soc 66: 849Google Scholar
  56. 56.
    Stork G, Niu D, Fujimoto A, Koft ER, Balkovec JM, Tata JR, Dake GR (2001) The first stereo-selective total synthesis of quinine. J Am Chem Soc 123: 3239–3242PubMedGoogle Scholar
  57. 57.
    Seeman JI (2007) The Woodward-Doering/Rabe-Kindler total synthesis of quinine: Setting the record straight. Angew Chem Int Ed 46: 1378–1413Google Scholar
  58. 58.
    Kaufman TS, Rúveda EA (2005) The quest for quinine: Those who won the battles and those who won the war. Angew Chem Int, Ed 44: 854–885Google Scholar
  59. 59.
    Julian PL, Pikl J (1935) Studies in the indole series. IV. The synthesis of d, l-eserethole. J Am Chem Soc 57: 563–566Google Scholar
  60. 60.
    Ault A (2008) Percy Julian, Robert Robinson, and the identify of eserethole. J Chem Educ 85: 1524–1530Google Scholar
  61. 61.
    Dobson CM (2004) Chemical space and biology. Nature 432: 824–828PubMedGoogle Scholar
  62. 62.
    Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF, Schenck RJ, Trippe AJ (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J Org Chem 73: 4443–4451PubMedGoogle Scholar
  63. 63.
    Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: A molecular modeling perspective. Med Res Rev 16: 3–50PubMedGoogle Scholar
  64. 64.
    Feher M, Schmidt JM (2003) Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inform Comp Sci 43: 218–227Google Scholar
  65. 65.
    Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H (2005) Charting biologically relevant chemical space: A structural classification of natural products (Sconp). Proc Natl Acad Sci USA 102: 17272–17277PubMedGoogle Scholar
  66. 66.
    Wetzel S, Schuffenhauer A, Roggo S, Ertl P, Waldmann H (2007) cheminformatic analysis of natural products and their chemical space. Chimia 61: 355–360Google Scholar
  67. 67.
    Larsson J, Gottfries J, Muresan S, Backlund A (2007) chemGPS-NP: Tuned for navigation in biologically relevant chemical space. J Nat Prod 70: 789–794PubMedGoogle Scholar
  68. 68.
    Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432: 829–837PubMedGoogle Scholar
  69. 69.
    Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432: 846–854PubMedGoogle Scholar
  70. 70.
    Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432: 855–861PubMedGoogle Scholar
  71. 71.
    Newman DJ (2008) Natural products as leads to potential drugs: An old process or the new hope for drug discovery?. J Med Chem 51: 2589–2599PubMedGoogle Scholar
  72. 72.
    Kumar K, Waldmann H (2009) Synthesis of natural product inspired compound collections. Angew Chem Int Ed 48: 3224–3242Google Scholar
  73. 73.
    Marco-Contelles J, Carreiras MD, Rodríguez C, Villarroya M, García AG (2006) Synthesis and pharmacology of galantamine. Chem Rev 106: 116–133PubMedGoogle Scholar
  74. 74.
    Heinrich M, Teoh HL (2004) Galanthamine from snowdrop — The development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92: 147–162PubMedGoogle Scholar
  75. 75.
    Pelish HE, Westwood NJ, Feng Y, Kirchhausen T, Shair MD (2001) Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. J Am Chem Soc 123: 6740–6741PubMedGoogle Scholar
  76. 76.
    Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Natural product guided compound library development. Curr Med Chem 9: 2129–2145PubMedGoogle Scholar
  77. 77.
    Abreu PM, Branco PS (2003) Natural product-like combinatorial libraries. J Braz Chem Soc 14: 675–712Google Scholar
  78. 78.
    Kren V, Martínková L (2001) Glycosides in medicine: The role of glycosidic residue in biological activity. Curr Med Chem 8: 1303–1328PubMedGoogle Scholar
  79. 79.
    Withering W (1785) An account of the foxglove and some of its medical uses; with practical remarks on the dropsy, and some other diseases. Swinney, Birmingham, UKGoogle Scholar
  80. 80.
    Langenhan JM, Peters NR, Guzei IA, Hoffmann M, Thorson JS (2005) Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc Natl Acad Sci USA 102: 12305–12310PubMedGoogle Scholar
  81. 81.
    Ahmed A, Peters NR, Fitzgerald MK, Watson JA, Hoffmann FM, Thorson JS (2006) Colchicine glycorandomization influences cytotoxicity and mechanism of action. J Am Chem Soc 128: 14224–14225PubMedGoogle Scholar
  82. 82.
    Langenhan JM, Griffith BR, Thorson JS (2005) Neoglycorandomization and chemoenzy matic glycorandomization: Two complementary tools for natural product diversification. J Nat Prod 68: 1696–1711PubMedGoogle Scholar
  83. 83.
    Thorson JS, Hosted TJ, Jiang J, Biggins JB, Ahlert J (2001) Nature’s carbohydrate chemists: The enzymatic glycosylation of bioactive bacterial metabolites. Curr Org Chem 5: 139–167Google Scholar
  84. 84.
    Williams GJ, Gantt RW, Thorson JS (2008) The impact of enzyme engineering upon natural product glycodiversification. Curr Opin Chem Biol 12: 556–564PubMedGoogle Scholar
  85. 85.
    Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3: 657–662PubMedGoogle Scholar
  86. 86.
    Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites. Trends Plant Sci 9: 433–440PubMedGoogle Scholar
  87. 87.
    Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: Historic achievements in natural products research J Nat Prod 67: 129–135PubMedGoogle Scholar
  88. 88.
    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253–265PubMedGoogle Scholar
  89. 89.
    Kingston DG, Newman DJ (2007) Taxoids: Cancer-fighting compounds from nature. Curr Opin Drug Discov Devel 10: 130–144PubMedGoogle Scholar
  90. 90.
    Frense D (2007) Taxanes: Perspectives for biotechnological production. Appl Microbiol Biotechnol 73: 1233–1240PubMedGoogle Scholar
  91. 91.
    Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH Cusidó RM, Palazón J (2009) Biotechnological production of taxol and related taxoids: Current state and prospects. Anticancer Agents Med Chem 9: 109–121PubMedGoogle Scholar
  92. 92.
    Covello PS (2008) Making artemisinin. Phytochemistry 69: 2881–2885PubMedGoogle Scholar
  93. 93.
    Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechol 19: 597–605Google Scholar
  94. 94.
    Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23: 265–279PubMedGoogle Scholar
  95. 95.
    Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105: 7393–7398PubMedGoogle Scholar
  96. 96.
    Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4: 564–573PubMedGoogle Scholar
  97. 97.
    Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus Alkaloids: Pharmacognosy and biotechnology. Curr Med Chem 11: 607–628Google Scholar
  98. 98.
    McCoy E, O’Connor SE (2006) Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. J Am Chem Soc 128: 14276–14277PubMedGoogle Scholar
  99. 99.
    Bernhardt P, McCoy E, O’Connor SE (2007) Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chem Biol 14: 888–897PubMedGoogle Scholar
  100. 100.
    Staunton J, Weissman KJ (2001) Polyketide biosynthesis: A millennium review. Nat Prod Rep 18: 380–416PubMedGoogle Scholar
  101. 101.
    Flores-Sanchez IJ, Verpoorte R (2009) Plant polyketide synthases: A fascinating group of enzymes. Plant Physiol Biochem 47: 167–174PubMedGoogle Scholar
  102. 102.
    Shi S, Morita H, Wanibuchi K, Mizuuchi Y, Noguchi H, Abe I (2008) Enzymatic synthesis of plant polyketides. Curr Org Synth 5: 250–266Google Scholar
  103. 103.
    Crick F (1970) Central dogma of molecular biology. Nature 227: 561–563PubMedGoogle Scholar
  104. 104.
    Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934PubMedGoogle Scholar
  105. 105.
    Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106: 6477–6482PubMedGoogle Scholar
  106. 106.
    Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: A platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1: 153–161PubMedGoogle Scholar
  107. 107.
    Robertson DG, Reily MD, Baker JD (2007) Metabonomics in pharmaceutical discovery and development. J Proteome Res 6: 526–539PubMedGoogle Scholar
  108. 108.
    Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8: 1243–1266PubMedGoogle Scholar
  109. 109.
    Craig A, Sidaway J, Holmes E, Orton T, Jackson D, Rowlinson R, Nickson J, Tonge R, Wilson I, Nicholson J (2006) Systems toxicology: Integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 5: 1586–1601PubMedGoogle Scholar
  110. 110.
    Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: Aims and prospects. Nat Rev Genet 5: 936–948PubMedGoogle Scholar
  111. 111.
    Waters MD, Olden K, Tennant RW (2003) Toxicogenomic approach for assessing toxicant-related disease. Mutat Res 544: 415–424PubMedGoogle Scholar
  112. 112.
    Xirasagar S, Gustafson SF, Huang CC, Pan Q, Fostel J, Boyer P, Merrick BA, Tomer KB, Chan DD, Yost KJ 3rd, Choi D, Xiao N, Stasiewicz S, Bushel P, Waters MD (2006) Chemical effects in biological systems (CEBS) object model for toxicology data, SysTox-OM: Design and application. Bioinformatics 22: 874–882PubMedGoogle Scholar
  113. 113.
    Patwardhan B, Warude D, Pushpangadan P, Bhatt N (2005) Ayurveda and traditional Chinese medicine: A comparative overview. Evid Based Complement Alternat Med 2: 465–473PubMedGoogle Scholar
  114. 114.
    Corson TW, Crews CM (2007) Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell 130: 769–774PubMedGoogle Scholar
  115. 115.
    Wagner H, Ulrich-Merzenich G (2009) Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 16: 97–110PubMedGoogle Scholar
  116. 116.
    Williamson EM (2001) Synergy and other interactions in phytomedicine. Phytomedicine 8: 401–409PubMedGoogle Scholar
  117. 117.
    Ulrich-Merzenich G, Panek D, Zeitler H, Wagner H, Vetter H (2009) New perspectives for synergy research with the “omic”-technologies. Phytomedicine 16: 495–508PubMedGoogle Scholar
  118. 118.
    Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and systems biology: A perfect holistic match. J Ethnopharmacol 100: 53–56PubMedGoogle Scholar
  119. 119.
    Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3: 360–366PubMedGoogle Scholar
  120. 120.
    Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehár J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 100: 7977–7982PubMedGoogle Scholar
  121. 121.
    Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12: 66–71PubMedGoogle Scholar
  122. 122.
    Heinrich M (2008) Ethnopharmacy and natural product research — Multidisciplinary opportunities for research in the metabolomic age. Phytochem Lett 1: 1–5Google Scholar
  123. 123.
    Urich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H (2007) Application of the “-omic-” technologies in phytomedicine. Phytomedicine 14: 70–82Google Scholar
  124. 124.
    Wang M, Lamers R, Korthout H, van Nesselrooij JHJ, Witkamp RF, van der Heijden R, Voshol PJ, Havekes LM, Verpoorte R, van der Greef J (2005) Metabolomics in the context of systems biology: Bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19: 173–182PubMedGoogle Scholar
  125. 125.
    Kang YJ (2008) Herbogenomics: From traditional Chinese medicine to novel therapeutics. Exp Biol Med 233: 1059–1065Google Scholar
  126. 126.
    Watanabe CMH, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ, Schultz PG, Gohil K (2001) The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba. Proc Natl Acad Sci USA 98: 6577–6580PubMedGoogle Scholar
  127. 127.
    May BH, Yang AWH, Zhang AL, Owens MD, Bennett L, Head R, Cobiac L, Li CG, Hugel H, Story DF, Xue CCL (2009) Chinese herbal medicine for mild cognitive impairment and age associated memory impairment: A review of randomised controlled trials. Biogerontology 10: 109–123PubMedGoogle Scholar
  128. 128.
    Christen Y, Maixent JM (2002) What is Ginkgo biloba extract EGb 761? An overview — From molecular biology to clinical medicine. Cell Mol Biol 48: 601–611PubMedGoogle Scholar
  129. 129.
    Mahadevan S, Park Y (2008) Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J Food Sci 73: R14–R19PubMedGoogle Scholar
  130. 130.
    Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64: 465–472PubMedGoogle Scholar
  131. 131.
    Wang Z, Du QY, Wang FS, Liu ZR, Li BG, Wang AM, Wang YY (2004) Microarray analysis of gene expression on herbal glycoside recipes improving deficient ability of spatial learning memory in ischemic mice. J Neurochem 88: 1406–1415PubMedGoogle Scholar
  132. 132.
    Ise R, Han DH, Takahashi Y, Terasaka S, Inoue A, Tanji M, Kiyama R (2005) Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett 579: 1732–1740PubMedGoogle Scholar
  133. 133.
    Dong SJ, Inoue A, Zhu Y, Tanji M, Kiyama R (2007) Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root. Food Chem Toxicol 45: 2470–2478PubMedGoogle Scholar
  134. 134.
    Adachi T, Ono Y, Koh KB, Takashima K, Tainaka H, Matsuno Y, Nakagawa S, Todaka E, Sakurai K, Fukata H, Iguchi T, Komiyama M, Mori C (2004) Long-term alteration of gene expression without morphological change in testis after neonatal exposure to genistein in mice: Toxicogenomic analysis using cDNA microarray. Food Chem Toxicol 42: 445–452PubMedGoogle Scholar
  135. 135.
    Naciff JM, Hess KA, Overmann GJ, Torontali SM, Carr GJ, Tiesman JP, Foertsch LM, Richardson BD, Martinez JE, Daston GP (2005) Gene expression changes induced in the testis by transplacental exposure to high and low doses of 17α-ethynyl estradiol, genistein, or bisphenol A. Toxicol Sci 86: 396–416PubMedGoogle Scholar
  136. 136.
    Chen CS, Chen NJ, Lin LW, Hsieh CC, Chen GW, Hsieh MT (2006) Effects of Scutellariae Radix on gene expression in HEK 293 cells using cDNA microarray. J Ethnopharmacol 105: 346–351PubMedGoogle Scholar
  137. 137.
    Hsieh MT, Hsieh CL, Lin LW, Wu CR, Huang GS (2003) Differential gene expression of scopolamine-treated rat hippocampus-application of cDNA microarray technology. Life Sci 73: 1007–1016PubMedGoogle Scholar
  138. 138.
    Cho WCS (2007) Application of proteomics in Chinese medicine research. Am J Chinese Med 35: 911–922Google Scholar
  139. 139.
    Ong ES, Len SM, Lee AC, Chui P, Chooi KF (2004) Proteomic analysis of mouse liver for the evaluation of effects of Scutellariae radix by liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 18: 2522–2530PubMedGoogle Scholar
  140. 140.
    Goh D, Lee YH, Ong ES (2005) Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Agric Food Chem 53: 8197–8204PubMedGoogle Scholar
  141. 141.
    Lu GD, Shen HM, Ong CN, Chung MC (2007) Anticancer effects of aloe-emodin on HepG2 cells: Cellular and proteomic studies. Proteomics Clin Appl 1: 410–419Google Scholar
  142. 142.
    Wang Y, Liu L, Hu CC, Cheng YY (2007) Effects of Salviae Mitiorrhizae and Cortex Moutan extract on the rat heart after myocardial infarction: A proteomic study. Biochem Pharmacol 74: 415–424PubMedGoogle Scholar
  143. 143.
    Pakalapati G, Li L, Gretz N, Koch E, Wink M (2009) Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats. Phytomedicine 16: 845–855PubMedGoogle Scholar
  144. 144.
    Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW, Park JH (2009) Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd. Pharmazie 64: 242–247PubMedGoogle Scholar
  145. 145.
    Jacobs DI, Gaspari M, van der Greef J, van der Heijden R, Verpoorte R (2005) Proteome analysis of the medicinal plant Catharanthus roseus. Planta 221: 690–704PubMedGoogle Scholar
  146. 146.
    Chen MJ, Su MM, Zhao LP, Jiang J, Liu P, Cheng JY, Lai YJ, Liu YM, Jia W (2006) Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res 5: 995–1002PubMedGoogle Scholar
  147. 147.
    Chen MJ, Ni Y, Duan HQ, Qiu YP, Guo CY, Jiao Y, Shi HJ, Su MM, Jia W (2008) Mass spectrometry-based metabolic profiling of rat urine associated with general toxicity induced by the multiglycoside of Tripterygium wilfordii Hook. Chem Res Toxicol 21: 288–294PubMedGoogle Scholar
  148. 148.
    Wang YL, Tang HR, Nicholson JK, Hylands PJ, Sampson J, Holmes E (2005) A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem 53: 191–196PubMedGoogle Scholar
  149. 149.
    Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, Nicholson JK, Cassidy A (2005) Biofluid 1H NMR-based metabonomic techniques in nutrition research — Metabolic effects of dietary isoflavones in humans. J Nutr Biochem 16: 236–244PubMedGoogle Scholar
  150. 150.
    Solanky KS, Bailey NJ, Beckwith-Hall BM, Davis A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323: 197–204PubMedGoogle Scholar
  151. 151.
    Law WS, Huang PY, Ong ES, Ong CN, Li SFY, Pasikanti KK, Chan ECY (2008) Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and 1H NMR spectroscopy. Rapid Commun Mass Spectrom 22: 2436–2446PubMedGoogle Scholar
  152. 152.
    Gulland JM, Robinson R (1925) The constitution of codeine and thebaine. Mem Proc Manch Lit Philos Soc 69: 79–86Google Scholar
  153. 153.
    Gates M, Tschudi G (1952) The synthesis of morphine. J Am Chem Soc 78: 1380–1393Google Scholar
  154. 154.
    Pelletier PJ, Caventou JB (1818) Note sur un novel Alcali. Annales de Chemie et de Physique 104–105: 323–324Google Scholar
  155. 155.
    Openshaw HT, Robinson R (1946) Constitution of strychnine and the biogenetic relationship of strychnine and quinine. Nature 157: 438Google Scholar
  156. 156.
    Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1954) The total synthesis of strychnine. J Am Chem Soc 76: 4749–4751Google Scholar
  157. 157.
    Pelletier PJ, Caventou JB (1820) Rescherches chimiques sur les Quinquinas. Ber Dtsch Chem Ges 51: 466–467Google Scholar
  158. 159.
    Woodward RB, Doering, WE (1944) The total synthesis of quinine. J Am Chem Soc 66: 849Google Scholar
  159. 160.
    Pelletier PJ, Caventou JB (1820) Examen chimique de plusieurs végétaux de la famille des colchicées, et du principe actif qu’ils renferment (Cévadille (Veratrum sabadilla); hellébore blanc (Veratrum album); colchique commun (Colchicum autumnale)]. Annales de Chemie et de Physique 14: 69–83Google Scholar
  160. 161.
    King MV, De Vries JL, Pepinsky R (1952) An x-ray diffraction determination of the chemical structure of colchicine. Acta Crystallogr B 5: 437Google Scholar
  161. 162.
    Schreiber J, Leimgruber W, Pesaro M, Schudel P, Threlfall T, Eschenmoser A (1961) Synthese des colchicins. (Synthesis of colchicines.) Helv Chim Acta 65: 540–597Google Scholar
  162. 163.
    Giseke AL (1826) Ueber das wirksame Princip des Schierlings Conium maculatum. Arch Apotheker-Vereins Nördl Teutschl 20: 97–111Google Scholar
  163. 164.
    Hoffmann AW (1881) Einwirkung der Wärme auf die Ammoniumbasen. Ber Dtsch Chem Ges 14: 705–713Google Scholar
  164. 165.
    Ladenburg A (1889) Nachtrag zu der Mittheilung über die Synthese der activen Coniine. Ber Dtsch Chem Ges 22: 1403–1404Google Scholar
  165. 166.
    Posselt W, Reimann L (1828) Chemische Unterschungen des Tabaks und Darstellung des eigenthümlichen wirksamen Princips dieser Pflanze. Geigers Magazin der Pharmacie 24: 138–161Google Scholar
  166. 167.
    Pinner A (1893) Ueber Nicotin. Die Konstitution des Alkaloids. Ber Dtsch Chem Ges 26: 292–305Google Scholar
  167. 168.
    Pictet A, Rotschy A (1904) Synthese des Nicotins. Ber Dtsch Chem Ges 37: 1225–1235Google Scholar
  168. 169.
    Leroux H (1830) Analyse de l’écorce de saule et découverte de la salicine. Journal de Chemie Médicale, de Pharmacie et de Toxicologie 6: 340–342Google Scholar
  169. 170.
    Piria MR (1838) Sur la composition de la Salicine et sur quelques-unes de ses réactions. Comptes Rendes 6: 338Google Scholar
  170. 171.
    Kolbe H (1860) Ueber die Synthese der Salicylsäure. (Regarding the synthesis of salicylic acid.) Liebigs Ann 113: 125–127Google Scholar
  171. 172.
    Michael A (1879) On the synthesis of helicin and phenolglucoside. Am Chem J 1: 305–312Google Scholar
  172. 173.
    Geiger PL, Hesse H (1833) Darstellung des Atropins. Liebigs Ann 5: 43–81Google Scholar
  173. 174.
    Ladenburg A (1883) Die Constitution des Atropins. Liebigs Ann 217: 74–149Google Scholar
  174. 175.
    Willstätter R (1901) Conversion of tropidine into tropine. Ber Dtsch Chem Ges 34: 3163–3165Google Scholar
  175. 176.
    Niemann A (1860) Ueber eine neue organische Base in den Cocablättern. Arch Pharm 153: 129–155Google Scholar
  176. 177.
    Willstätter R, Müller W (1898) Ueber die Constitution des Ecgonius. Ber Dtsch Chem Ges 31: 2655–2669Google Scholar
  177. 178.
    Jobst J, Hesse O (1864) Ueber die Bohne von Calabar. (Regarding the bean from calabar.) Liebigs Ann. 129S: 115–121Google Scholar
  178. 179.
    Podwyssotski V (1880) Pharmakologische Studien über Podophyllum peltatum. Arch Exp Pathol Pharmakol 13: 29–52Google Scholar
  179. 180.
    Hartwell JL, Schrecker AW (1951) Components of Podophyllin. V. The Contitution of Podophyllotoxin. J Am Chem Soc 73: 2909–2916Google Scholar
  180. 181.
    Gensler WJ, Gatsonis CD (1962) Synthesis of Podophyllotoxin. J Am Chem Soc 84: 1748–1749Google Scholar
  181. 182.
    Komppa G (1903) Die vollständige Synthese de Camphersäure und Dehydrocamphersäure. Ber Dtsch Chem Ges 36: 4332–4335Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2010

Authors and Affiliations

  • Bryan A. Hanson
    • 1
  1. 1.Department of Chemistry and Biochemistry, Julian Science and Mathematics CenterDePauw UniversityGreencastleUSA

Personalised recommendations