Phycotoxins: chemistry, mechanisms of action and shellfish poisoning

  • Gian Paolo Rossini
  • Philipp Hess
Part of the Experientia Supplementum book series (EXS, volume 100)


Phycotoxins are natural metabolites produced by micro-algae. Through accumulation in the food chain, these toxins may concentrate in different marine organisms, including filter-feeding bivalves, burrowing and grazing organisms, herbivorous and predatory fish. Human poisoning due to ingestion of seafood contaminated by phycotoxins has occurred in the past, and harmful algal blooms (HABs) are naturally occurring events. Still, we are witnessing a global increase in HABs and seafood contaminations, whose causative factors are only partially understood. Phycotoxins are small to medium-sized natural products and belong to many different groups of chemical compounds. The molecular mass ranges from ≈300 to over 3000 Da, and the compound classes represented include amino acids, alkaloids and polyketides. Each compound group typically has several main compounds based on the same or similar structure. However, most groups also have several analogues, which are either produced by the algae or through metabolism in fish or shellfish or other marine organisms. The different phycotoxins have distinct molecular mechanisms of action. Saxitoxins, ciguatoxins, brevetoxins, gambierol, palytoxins, domoic acid, and, perhaps, cyclic imines, alter different ion channels and/or pumps at the level of the cell membrane. The normal functioning of neuronal and other excitable tissues is primarily perturbed by these mechanisms, leading to adverse effects in humans. Okadaic acid and related compounds inhibit serine/threonine phosphoprotein phosphatases, and disrupt major mechanisms controlling cellular functions. Pectenotoxins bind to actin filaments, and alter cellular cytoskeleton. The precise mechanisms of action of yessotoxins and azaspiracids, in turn, are still undetermined. The route of human exposure to phycotoxins is usually oral, although living systems may become exposed to phycotoxins through other routes. Based on recorded symptoms, the major poisonings recognized so far include paralytic, neurotoxic, amnesic, diarrheic shellfish poisonings, ciguatera, as well as palytoxin and azaspiracid poisonings.


Okadaic Acid Domoic Acid Paralytic Shellfish Poisoning Shellfish Poisoning Mouse Bioassay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, Van Engen D, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103: 2469–2471CrossRefGoogle Scholar
  2. 2.
    Takemoto T, Daigo K (1958) Constituents of Chondria armata. Chem Pharm Bull 6: 578–580Google Scholar
  3. 3.
    Daigo K (1959) Constituents of Chondria armata. I. Detection of the anthelmintic constituents. Yakugaku Zasshi 79: 350–353Google Scholar
  4. 4.
    Daigo K (1959) Constuents of Chondria armata. II. Isolation of an anthelmintic constituent. Yakugaku Zasshi 79: 353–356Google Scholar
  5. 5.
    Takemoto T, Daigo K (1960) Über die Inhaltsstoffe von Chondria armata und ihre pharmakologische Wirkung. Arch Pharm 293: 627–633PubMedCrossRefGoogle Scholar
  6. 6.
    Moore RE, Scheuer PJ (1971) Palytoxin: A new marine toxin from a coelenterate. Science 172: 495–498PubMedCrossRefGoogle Scholar
  7. 7.
    Hallegraeff GM (2004) Harmful algal blooms: A global overview. In: GM Hallegraeff, DM Anderson, AD Cembella (eds): Manual on Harmful Marine Microalgae, 2nd edn. UNESCO, Paris, 25–49Google Scholar
  8. 8.
    Gallitelli M, Ungaro N, Addante LM, Gentiloni N, Sabbà C (2005) Respiratory illness as a reaction to tropical algal blooms occurring in a temperate climate. J Am Med Assoc 293: 2599–2600CrossRefGoogle Scholar
  9. 9.
    Durando P, Ansaldi F, Oreste P, Moscatelli P, Marensi L, Grillo C, Gasparini R, Icardi G (2007) Collaborative Group for Ligurian Syndromic Algal Surveillance. Eur Surveill 12: E070607.1Google Scholar
  10. 10.
    Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JB, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impact of biodiversity loss on ocean ecosystem services. Science 314: 787–790PubMedCrossRefGoogle Scholar
  11. 11.
    Virchow R (1885) Über die Vergiftungen durch Miesmuscheln in Wilhelmshaven. Berl Klin Wochenschr 48: 1–2Google Scholar
  12. 12.
    Wolff M (1887) Ueber das erneute Vorkommen von giftigen Miessmuscheln in Wilhelmshaven. Virchows Arch 110: 376–380CrossRefGoogle Scholar
  13. 13.
    Sommer H, Heyer KF (1937) Paralytic shellfish poisoning. AMA Arch Path 24: 560–598Google Scholar
  14. 14.
    Onoue Y, Noguchi T, Maruyama J, Hashimoto K, Seto H (1931) Properties of two toxins newly isolated from oysters. J Agric Food Chem 2: 420–423Google Scholar
  15. 15.
    Schantz EJ, Mold JD, Stanger DW, Shavel J, Riel FJ, Bowden JP, Lynch JM, Wyler RS, Riegel B, Sommer H (1957) Paralytic shellfish poison. VI. A procedure for the isolation and purification of the poison from toxic clam and mussel tissue. J Am Chem Soc 79: 5230–5235CrossRefGoogle Scholar
  16. 16.
    Schantz EJ, McFarren EF, Schafer ML, Lewis KH (1958) Purified shellfish poison for bioassay standardization. J Assoc Off Anal Chem 41: 160–168Google Scholar
  17. 17.
    Wong JL, Oesterlin R, Rapoport H (1971) The structure of saxitoxin. J Am Chem Soc 93: 1238–1239Google Scholar
  18. 18.
    Quilliam MA, Wright JLC (1989) The amnesic shellfish poisoning mystery. Anal Chem 61: 1053–1060CrossRefGoogle Scholar
  19. 19.
    Yasumoto T, Oshima Y, Yamaguchi M (1978) Occurrence of a new type of shellfish poisoning in the Tohoku district. Bull Jpn Soc Sci Fish 44: 1249–1255Google Scholar
  20. 20.
    Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120: 9967–9968CrossRefGoogle Scholar
  21. 21.
    FAO. Report of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in Bivalve Molluscs, Oslo, Norway, Sept. 26–30, 2004. Available at: (accessed 5 June 2009)Google Scholar
  22. 22.
    Dell’Aversano C, Eaglesham GK, Quilliam MA (2004) Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography-mass spectrometry. J Chromatogr A 1028: 155–164PubMedCrossRefGoogle Scholar
  23. 23.
    Dell’Aversano C, Walter JA, Burton IW, Stirling DJ, Fattorusso E, Quilliam MA (2008) Isolation and structure elucidation of new and unusual saxitoxin analogues from mussels. J Nat Prod 71: 1518–1523PubMedCrossRefGoogle Scholar
  24. 24.
    Hall S, Reichaedt PB (1984) Cryptic paralytic shellfish toxins. In: EP Regalis (ed.): Seafood Toxins. American Chemical Society, Washington DC, 113–123CrossRefGoogle Scholar
  25. 25.
    Harada T, Oshima Y, Yasumoto T (1984) Assessment of potential activation of gonyautoxin V in the stomach of mice and rats. Toxicon 22: 476–478PubMedCrossRefGoogle Scholar
  26. 26.
    Association of Official Analytical Chemists (2005) Offial Method 959.08. Paralytic shellfish poison, biological method. In: AOAC Official Methods of Analysis, 18th edn., AOAC Gaithersburg, USA, 79–80Google Scholar
  27. 27.
    Oshima Y (1995) Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J AOAC Int 78: 528–532Google Scholar
  28. 28.
    Lawrence JF, Niedzwiadek B, Menard C (2004) Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: Interlaboratory study. J AOAC Int 87: 83–100PubMedGoogle Scholar
  29. Association of Official Analytical Chemists (2005) Off. Method 2005.06. Quantitative determination of paralytic shellfish poisoining toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection. In: AOAC Official Methods of Analysis, 18th end., AOAC, Gaithersburg, USA, 81–82Google Scholar
  30. 30.
    Dell’Aversano C, Hess P, Quilliam MA (2005) Hydrophilic interaction liquid chromatographymass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A 1081: 190–201PubMedCrossRefGoogle Scholar
  31. 31.
    Quilliam MA, Hess P, Dell’Aversano C (2001) Recent developments in the analysis of phycotoxins by liquid chromatography — mass spectrometry. In: WJ De Koe, RA Samson, HP Van Egmond, J Gilbert, M Sabino (eds): Mycotoxins and Phycotoxins in Perspective at the Turn of the Millenium, W.J. de Koe, Wageningen, 383–391Google Scholar
  32. 32.
    Walter JA, Leek DM, Falk M (1992) NMR study of the protonation of domoic acid. Can J Chem 70: 1156–1161CrossRefGoogle Scholar
  33. 33.
    Maeda M, Kodama T, Tanaka T, Yoshizumi H, Takemoto T, Nomoto K, Fujita T (1986) Structures of isodomoic acids A, B and C, novel insecticidal amino acids from the red alga Chondria armata. Chem Pharm Bull 34: 4892–4895Google Scholar
  34. 34.
    Maeda M, Kodama T, Tanaka T, Yoshizumi H, Takemoto T, Nomoto K, Fujita T (1987) Structures of domoilactone A and B, novel amino acids from the red alga, Chondria armata. Tetrahedron Lett 28: 633–636CrossRefGoogle Scholar
  35. 35.
    Wright JLC, Falk M, McInnes AG, Walter JA (1990) Identification of isodomoic acid D and two new geometrical isomers of domoic acid in toxic mussels. Can J Chem 68: 22–25CrossRefGoogle Scholar
  36. 36.
    Walter JA, Falk M, Wright JLC (1994) Chemistry of the shellfish toxin domoic acid: Characterization of related compounds. Can J Chem 72: 430–436CrossRefGoogle Scholar
  37. 37.
    Zaman L, Arakawa O, Shimosu A, Onoue Y, Nishio S, Shida Y, Noguchi T (1997) Two new isomers of domoic acid from a red alga, Chondria armata. Toxicon 35: 205–212PubMedCrossRefGoogle Scholar
  38. 38.
    Holland PT, Selwood AI, Mountford DO, Wilkins AL, McNabb P, Rhodes LL, Doucette GJ, Mikulski CM, King KL (2005) Isodomoic acid C, an unusual amnesic shellfish poisoning toxin from Pseudo-nitzschia australis. Chem Res Toxicol 18: 814–816PubMedCrossRefGoogle Scholar
  39. 39.
    Ramsdell JS (2007) The molecular and integrative basis to domoic acid toxicity. In: LM Botana (ed.): Chemistry and Pharmacology of Marine Toxins, Blackwell Publishing, Oxford, 223–250Google Scholar
  40. 40.
    Quilliam MA, Xie M, Hardstaff WR (1995) A rapid extraction and cleanup procedure for the liquid chromatographic determination of domoic acid in unsalted seafood. J AOAC Int 78: 543–554Google Scholar
  41. 41.
    Hess P, Morris S, Stobo LA, Brown NA, McEvoy JDG, Kennedy G, Young PB, Slattery D, McGovern E, McMahon T, Gallacher S (2005) LC-UV and LC-MS methods for the determination of domoic acid. TrAC — Trends Anal Chem 24: 358–367CrossRefGoogle Scholar
  42. 42.
    McCarron P, Hess P (2006) Tissue distribution and effects of heat treatments on the content of domoic acid in blue mussels, Mytilus edulis. Toxicon 47: 473–479PubMedCrossRefGoogle Scholar
  43. 43.
    McCarron P, Burrell S, Hess P (2007) Effect of addition of antibiotics and an antioxidant, on the stability of tissue reference materials for domoic acid, the amnesic shellfish poison. Anal Bioanal Chem 387: 2495–2502PubMedCrossRefGoogle Scholar
  44. 44.
    Twiner MJ, Rehmann N, Hess P, Doucette GJ (2008) Azaspiracid shellfish poisoning: A review on the ecology, chemistry, toxicology and human health impacts. Marine Drugs 6: 39–74PubMedGoogle Scholar
  45. 45.
    Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A (2006) First detection of azaspiracids in North West Africa. J Shell Res 25: 1067–1071Google Scholar
  46. 46.
    Ueoka R, Ito A, Izumikawa M, Maeda S, Takagi M, Shin-ya K, Yoshida M, van Zoest RWM, Matsunaga S (2009) Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin. Toxicon 53: 680–684PubMedCrossRefGoogle Scholar
  47. 47.
    Hess P, Butter T, Petersen A, Silke J, McMahon T (2009) Performance of the EU harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in naturally contaminated mussel (Mytilus edulis) hepatopancreas tissue homogenates characterised by liquid chromatography coupled to tandem mass spectrometry. Toxicon 53: 713–722PubMedCrossRefGoogle Scholar
  48. 48.
    Alfonso C, Rehmann N, Hess P, Alfonso A, Wandscheer C, Abuin M, Vale C, Otero P, Vieytes M, Botana LM (2008) Evaluation of various pH and temperature conditions on the stability of azaspiracids, and their importance in preparative isolation and toxicological studies. Anal Chem 80: 9672–9680PubMedCrossRefGoogle Scholar
  49. 49.
    Nicolaou K, Chen D, Li Y_ Qian W, Ling T, Vyskocil S, Koftis T, Govindasamy M, Uesaka N (2003) Total synthesis of the proposed azaspiracid-1 structure, part 2: Coupling of the C1–C20, C21–C27, and C28–C40 fragments and completion of the synthesis, Angew Chem 42: 3649–3653CrossRefGoogle Scholar
  50. 50.
    Nicolaou K, Li, Uesaka N, Koftis T, Byskocil S, Ling T, Govindasamy M, Qian W, Bernal F, Chen D (2003) Total synthesis of the proposed azaspiracid-1 structure, part 1: Construction of the enantiomerically pure C1–C20, C21–C27, and C28–C40 fragments. Angew Chem 42: 3643–3648CrossRefGoogle Scholar
  51. 51.
    Nicolaou KC, Vyskocil S, Koftis TV, Yamada YM, Ling T, Chen D, Tang W, Petrovic G, Frederick M, Li Y, Satake M (2004) Structural revision and total synthesis of azaspiracid-1, part 1: Intelligence gathering and tentaive proposal. Angew Chem Int Ed 116: 4412–4418CrossRefGoogle Scholar
  52. 52.
    Nicolaou KC, Koftis T, Vyskocil S, Petrovic G, Ling T, Yamada M, Tang W, Frederick M (2004) Structural revision and total synthesis of azaspiracid-1, part 2: Definition of the ABCD domain and total synthesis. Angew Chem Int Ed 116: 4418–4424CrossRefGoogle Scholar
  53. 53.
    Rehmann N, Hess P, Quilliam MA (2008) Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra performance liquid chromatography-tandem mass spectrometry. Rapid Commun Mass Spectrom 22: 549–558PubMedCrossRefGoogle Scholar
  54. 54.
    Krock B, Tillmann U, John U, Cembella AD (2009) Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea. Harmful Algae 8: 254–263CrossRefGoogle Scholar
  55. 55.
    Tillmann U, Elbrachter M, Krock B, John U, Cembella A (2009) Azadinium spinosum gen. et sp nov (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol 44: 63–79CrossRefGoogle Scholar
  56. 56.
    McMahon T, Silke J (1996) Winter toxicity of unknown aetiology in mussels. Harmful Algal News 14: 2Google Scholar
  57. 57.
    Hess P, Nguyen L, Aasen J, Keogh M, Kilcoyne J, McCarron P, Aune T (2005) Tissue distribution, effects of cooking and parameters affecting the extraction of azaspiracids from mussels, Mytïlus edulis, prior to analysis by liquid chromatography coupled to mass spectrometry. Toxicon 46: 62–71PubMedCrossRefGoogle Scholar
  58. 58.
    McCarron P, Kilcoyne J, Miles CO, Hess P (2009) Formation of azaspiracid-3,-4,-6, and-9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J Agric Food Chem 57: 160–169PubMedCrossRefGoogle Scholar
  59. 59.
    Ofuji K, Satake M, McMahon T, James KJ, Naoki H, Oshima Y, Yasumoto T (2001) Structures of azaspiracid analogs, azaspiracid-4 and azaspiracid-5, causative toxins of azaspiracid poisoning in Europe. Biosci Biotechnol Biochem 65: 740–742PubMedCrossRefGoogle Scholar
  60. 60.
    Ito E, Frederick MO, Koftis TV, Tang W, Petrovic G, Ling T, Nicolaou KC (2006) Structure toxicity relationships of synthetic azaspiracid-1 and analogs in mice. Harmful Algae 5: 586–591CrossRefGoogle Scholar
  61. 61.
    Yasumoto T, Oshima Y, Sugarawa W, Fukuyo Y, Oguri H, Igarashi T, Fujita N (1980) Identification of Dinophysis fortii as the causative organism of diarrhetic shellfish poisoning. Bull Jpn Soc Sci Fish 46: 1405–1411Google Scholar
  62. 62.
    Kumagai M, Yanagi T, Murata M, Yasumoto T, Kat M, Lassus P, Rodriguez-Vazquez JA (1986) Okadaic acid as the causative toxin of diarrhetic shellfish poisoning in Europe. Agric Biol Chem 50: 2853–2857Google Scholar
  63. 63.
    Hu T, Doyle J, Jackson D, Marr J, Nixon E, Pleasance S, Quilliam MA, Walter JA, Wright JLC (1992) Isolation of a new diarrhetic shellfish poison from Irish mussels. J Chem Soc Chem Commun 39–41Google Scholar
  64. 64.
    Swanson K, Villareal T, Campbell L (2008) The 2008 DSP event along the Texas coast: Detection and observations. Poster presentation at the 122nd AOAC Annual Meeting and Exposition, 21–25 September 2008, Dallas, TXGoogle Scholar
  65. 65.
    McCarron P, Kilcoyne J, Hess P (2008) Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis). Toxicon 51: 1081–1089PubMedCrossRefGoogle Scholar
  66. 66.
    Yasumoto T, Murata M, Lee JS, Torigoe K (1989) Polyether toxins produced by dinoflagellates. In: S Natori, K Hashimoto, Y Ueno (eds): Mycotoxins and Phycotoxins’ 88, Elsevier, Amsterdam, 375–382Google Scholar
  67. 67.
    Hu TM, Curtis JM, Oshima Y, Quilliam MA, Walter JA, Watsonwright WM, Wright JLC (1995) Spirolide-B and spirolides-D, 2 novel macrocycles isolated from the digestive glands of shellfish. J Chem Soc Chem Comm 2159–2161Google Scholar
  68. 68.
    Vale P (2007) Chemistry of diarrhetic shellfish poisoning toxins. In: LM Botana (ed.): Chemistry and Pharmacology of Marine Toxins, Blackwell Publishing, Oxford, 211–221Google Scholar
  69. 69.
    Yasumoto T, Murata M, Oshima Y, Sano M (1985) Diarrhetic shellfish toxins. Tetrahedron 41: 1019–1025CrossRefGoogle Scholar
  70. 70.
    Yanagi T, Murata M, Torigoe K, Yasumoto T (1989) Biological activities of semisynthetic analogs of dinophysistoxin-3, the major diarrhetic shellfish toxin. Agric Biol Chem 53: 525–529Google Scholar
  71. 71.
    Britton R, Roberge M, Brown C, van Soest R, Andersen RJ (2003) New okadaic acid analogues from the marine sponge Merriamum oxeato and their effect on mitosis. J Nat Prod 66, 838–843PubMedCrossRefGoogle Scholar
  72. 72.
    Torgersen T, Miles CO, Rundberget T, Wilkins AL (2008) New esters of okadaic acid in seawater and blue mussels (Mytilus edulis). J Agric Food Chem 56: 9628–9635PubMedCrossRefGoogle Scholar
  73. 73.
    Lee JS, Igarashi T, Fraga S, Dahl E, Hovgaard P, Yasumoto T (1989) Determination of diarrhetic shellfish toxins in various dinoflagellate species. J Appl Physiol 1: 147–152Google Scholar
  74. 74.
    EFSA (2008) Marine biotoxins in shellfish — Okadaic acid and analogues, Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J 589: 1–62Google Scholar
  75. 75.
    Aune T, Larsen S, Aasen J, Rehmann N, Satake M, Hess P (2007) Relative toxicity of dinophysistoxin-2 (DTX-2) compared with okadaic acid, based on acute intraperitoneal toxicity in mice. Toxicon 49: 1–7PubMedCrossRefGoogle Scholar
  76. 76.
    Miles CO (2007) Pectenotoxins. In: LM Botana (ed.): Chemistry and Pharmacology of Marine Toxins, Blackwell Publishing, Oxford, 159–186Google Scholar
  77. 77.
    Suzuki T, Igarashi T, Ichimi K, Watai M, Suzuki M, Ogiso E, Yasumoto T (2005) Kinetics of diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops Patinopecten yessoensis. Fish Sci 71: 948–955CrossRefGoogle Scholar
  78. 78.
    Miles CO, Wilkins AL, Munday R, Dines MH, Hawkes AD, Briggs LR, Sandvik M, Jensen DJ, Cooney JM, Holland PT, Quilliam MA, MacKenzie AL, Beuzenberg V, Towers NR (2004) Isolation of pectenotoxin-2 from Dinophysis acuta and its conversion to pectenotoxin-2 seco acid, and preliminary assessment of their acute toxicities. Toxicon 43: 1–9PubMedCrossRefGoogle Scholar
  79. 79.
    Wilkins AL, Rehmann N, Torgersen T, Rundberget T, Keogh M, Petersen D, Hess P, Rise F, Miles CO (2006) Identification of fatty acid esters of pectenotoxin-2 seco acid in blue mussels (Mytilus edulis) from Ireland. J Agric Food Chem 54: 5672–5678PubMedCrossRefGoogle Scholar
  80. 80.
    Ito E, Suzuki T, Oshima Y, Yasumoto T (2008) Studies of diarrhetic activity on pectenotoxin-6 in the mouse and rat. Toxicon 51: 707–716PubMedCrossRefGoogle Scholar
  81. 81.
    Hess P, Aasen JB (2007) Chemistry, origins and distribution of yessotoxin and its analogues. In: LM Botana (ed.): Chemistry and Pharmacology of Marine Toxins, Blackwell Publishing, Oxford, 187–202Google Scholar
  82. 82.
    Murata M, Kumagai M, Lee JS, Yasumoto T (1987) Isolation and structure of yessotoxin, a novel polyether compound implicated in diarrhetic shellfish poisoning. Tetrahedron Lett 28: 5869–5872CrossRefGoogle Scholar
  83. 83.
    Aune T, Sorby R, Yasumoto T, Ramstad H, Landsverk T (2002) Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice. Toxicon 40: 77–82PubMedCrossRefGoogle Scholar
  84. 84.
    Tubaro A, Sosa S, Carbonatto M, Altinier G, Vita F, Melato M, Satake M, Yasumoto T (2003) Oral and intraperitoneal acute toxicity studies of yessotoxin and homoyessotoxins in mice. Toxicon 41: 783–792PubMedCrossRefGoogle Scholar
  85. 85.
    Tubaro A, Sosa S, Altinier G, Soranzo MR, Satake M, Della Loggia R, Yasumoto T (2004) Short-term oral toxicity of homoyessotoxins, yessotoxin and okadaic acid in mice. Toxicon 43: 439–445PubMedCrossRefGoogle Scholar
  86. 86.
    Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno S, Guerrini F, Pistocchi R, Boni L (2003) Complex yessotoxins profile in Protoceratium reticulatum from north-western Adriatic sea revealed by LC-MS analysis. Toxicon 42: 7–14PubMedCrossRefGoogle Scholar
  87. 87.
    Samdal IA, Naustvoll LJ, Olseng CD, Briggs LR, Miles CO (2004) Use of ELISA to identify Protoceratium reticulatum as a source of yessotoxin in Norway. Toxicon 44: 75–82PubMedCrossRefGoogle Scholar
  88. 88.
    Satake M, MacKenzie L, Yasumoto T (1997) Hentification of Protoceratium reticulatum as the biogenetic origin of yessotoxin. Nat Toxins 5: 164–167PubMedCrossRefGoogle Scholar
  89. 89.
    Satake M, Ichimura T, Sekiguchi K, Yoshimatsu S, Oshima Y (1999) Confirmation of yessotoxin and 45,46,47-trinoryessotoxin production by Protoceratium reticulatum collected in Japan. Nat Toxins 7: 147–150PubMedCrossRefGoogle Scholar
  90. 90.
    Draisci R, Ferretti E, Palleschi L, Marchiafava C, Poletti R, Milandri A, Ceredi A, Pompei M (1999) High levels of yessotoxin in mussels and presence of yessotoxin and homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 37: 1187–1193PubMedCrossRefGoogle Scholar
  91. 91.
    Rhodes L, McNabb P, de Salas M, Briggs L, Beuzenberg V, Gladstone M (2006) Yessotoxin production by Gonyaulax spinifera. Harmful Algae 5: 148–155CrossRefGoogle Scholar
  92. 92.
    Draisci R, Lucentini L, Mascioni A (2000) Petenotoxins and yessotoxins: Chemistry, toxicology, pharmacology, and analysis. In: Botana, LM (ed.): Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection, Marcel Dekker, New York, 289–324Google Scholar
  93. 93.
    Finch S, Wilkins A. Hawkes A, Jensen D, MacKenzie L, Beuzenberg V, Quilliam M, Olseng C, Samdal I, Aasen J, Selwood AI, Cooney JM, Sandvik M, Miles CO (2005) Isolation and identification of (44-R,S)-44,55, dihydroxyyessotoxin from Protoceratium reticulatum, and its occurrence in extracts of shellfish from New Zealand, Norway and Canada Toxicon 46: 160–170PubMedCrossRefGoogle Scholar
  94. 94.
    Miles CO, Samdal IA, Aasen JAB, Jensen DJ, Quilliam M, Petersen D, Briggs LM, Wilkins AL, Rise F, Cooney JM, MacKenzie AL (2005) Evidence of numerous analogs of yessotoxin in Protoceratium reticulatum. Harmful Algae 4: 1075–1091CrossRefGoogle Scholar
  95. 95.
    Satake M, Tubaro A, Lee JS, Yasumoto T (1997) Two new analogs of yessotoxin, homoyessotoxin and 4,5-hydroxyhomoyessotoxin, isolated from mussels of the Adriatic Sea. Nat Toxins 5: 107–110PubMedCrossRefGoogle Scholar
  96. 96.
    Miles CO, Wilkins AL, Jensen DJ, Cooney JM, Quilliam MA, Aasen J, Mackenzie AL (2004) Isolation of 41a-homoyessotoxin and the identification of 9-methyl-41a-homoyessotoxin and nor-ring A-yessotoxin from Protoceratium reticulatum. Chem Res Toxicol 17: 1414–1422PubMedCrossRefGoogle Scholar
  97. 97.
    Miles CO, Wilkins AL, Hawkes AD, Selwood AI, Jensen DJ, Munday R, Cooney, JM, Beuzenberg V (2005) Polyhydroxylated amide analogs of yessotoxin from Protoceratium reticulatum. Toxicon 45: 61–71PubMedCrossRefGoogle Scholar
  98. 98.
    Ferrari S, Ciminiello P, Dell’Aversano C, Forino M, Malaguti C, Tubaro A, Poletti R, Yasumoto T, Fattorusso E, Rossini GP (2004) Structure-activity relationships of yessotoxins in cultured cells. Chem Res Toxicol 17: 1251–1257PubMedCrossRefGoogle Scholar
  99. 99.
    Moore RE, Bartolini G (1981) Structure of palytoxin. J Am Chem Soc 103: 2491–2494CrossRefGoogle Scholar
  100. 100.
    Uemura D, Ueda K, Hirata Y, Naoki H, Iwashita T (1981) Further studies on palytoxin. 1. Tetrahedron Lett 22: 1909–1912CrossRefGoogle Scholar
  101. 101.
    Uemura D, Ueda K, Hirata Y, Naoki H, Iwashita T (1981) Further studies on palytoxin. 2. Structure of palytoxin. Tetrahedron Lett 22: 2781–2784CrossRefGoogle Scholar
  102. 102.
    Katikou P (2008) Palytoxin and analogues: Ecobiology and origin, chemistry, metabolism, and chemical analysis. In: LM Botana (ed.): Seafood and Freshwater Toxins — Pharmacology, Physiology and Detection, CRC Press, Taylor & Francis Group, Boca Raton, FL, 631–663Google Scholar
  103. 103.
    Kita M, Uemura D (2008) Diverse chemical structures and bioactivities of marine toxins: Palytoxin and symbiodinolide. In: LM Botana (ed.): Seafood and Freshwater Toxins — Pharmacology, Physiology and Detection, CRC Press, Taylor & Francis Group, Boca Raton, FL, 665–674Google Scholar
  104. 104.
    Kimura S, Hashimoto Y, Yamazato K (1972) Toxicity of the zoanthid Palythoa tuberculosa. Toxicon 10: 611–617PubMedCrossRefGoogle Scholar
  105. 105.
    Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto M, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37: 55–65PubMedCrossRefGoogle Scholar
  106. 106.
    Penna A, Vila M, Fraga S, Giacobbe MG, Andreoni F, Riobo P, Vernesi C (2005) Characterization of Ostreopsis and Coolia (Dinophyceae) isolates in the western Mediterranean sea based on morphology, toxicity and internal transcribed spacer 5.8S rDNA sequences. J Phycol 41: 212–225CrossRefGoogle Scholar
  107. 107.
    Lenoir S, Ten-Hage L, Turquet J, Quod JP, Bernard C, Hennion MC (2004) First evidence of palytoxin analogues from an Ostreopsis mascarenensis (Dinophyceae) benthic bloom in Southwestern Indian Ocean. J Phycol 40: 1042–1051CrossRefGoogle Scholar
  108. 108.
    Moore RE, Bartolini G, Barchi J, Bothnerby AA, Dadok J, Ford J (1982) Absolute stereochemistry of palytoxin. J Am Chem Soc 104: 3776–3779CrossRefGoogle Scholar
  109. 109.
    Uemura D, Hirata Y, Iwashita T, Naoki H (1985) Studies on palytoxins. Tetrahedron 41: 1007–1017CrossRefGoogle Scholar
  110. 110.
    Frolova GM, Kuznetsova TA, Mikhailov VV, Elyakov GB (2000) An enzyme linked immunosorbent assay for detecting palytoxin-producing bacteria. Bioorg Khim 26: 315–320PubMedGoogle Scholar
  111. 111.
    Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Tartaglione L, Grillo C, Melchiorre N (2008) Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J Am Soc Mass Spectrom 19: 111–120PubMedCrossRefGoogle Scholar
  112. 112.
    Aligizaki K, Katikou P, Nikolaidis G, Panou A (2008) First episode of shellfish contamination by palytoxin-like compounds from Ostreopsis species (Aegean Sea, Greece). Toxicon 51: 418–427PubMedCrossRefGoogle Scholar
  113. 113.
    Uemura D, Chou T, Haino T, Nagatsu A, Fukuzawa S, Zheng S, Chen H (1995) Pinnatoxin A: A toxic amphoteric macrocycle from the Okinawan bivalve Pinna muricata. J Am Chem Soc 117: 1155–1156CrossRefGoogle Scholar
  114. 114.
    Takada N, Umemura N, Suenaga K, Uemura D (2001) Structural determination of pteriatoxins A, B and C, extremely potent toxins from the bivalve Pteria penguin. Tetrahedron Lett 42: 3495–3497CrossRefGoogle Scholar
  115. 115.
    Lu CK, Lee GH, Huang R, Chou HN (2001) Spiro-prorocentrimine, a novel macrocyclic lactone from a benthic Prorocentrum sp of Taiwan. Tetrahedron Lett 42: 1713–1716CrossRefGoogle Scholar
  116. 116.
    Seki T, Satake M, MacKenzie L, Kaspar HF, Yasumoto T (1995) Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett 36: 7093–7096CrossRefGoogle Scholar
  117. 117.
    Hu TM, Curtis JM, Walter JA, Wright JLC (1996) Characterization of biologically inactive spirolides E and F: Identification of the spirolide pharmacophore. Tetrahedron Lett 37: 7671–7674CrossRefGoogle Scholar
  118. 118.
    McCauley JA, Nagasawa K, Lander PA, Mischke SG, Semones MA, Kishi Y (1998) Total synthesis of pinnatoxin A. J Am Chem Soc 120: 7647–7648CrossRefGoogle Scholar
  119. 119.
    Molgo J, Girard E, Benoit E (2007) Cyclic imines: An insight into this emerging group of bioactive marine toxins. In: LM Botana (ed.): Phycotoxins, Chemistry and Biochemistry, Blackwell Publishing, Oxford, 319–335CrossRefGoogle Scholar
  120. 120.
    Cembella AD, Krock B (2008) Cyclic imine toxins: Chemistry, biogeography, biosynthesis and pharmacology. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 561–580Google Scholar
  121. 121.
    Munday R (2008) Toxicology of cyclic imines: Gymnodimine, spirolides, pinnatoxins, pteriatoxins, prorocentrolide, spiro-prorocentrimine and symbioimines. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 581–594Google Scholar
  122. 122.
    Baden DG, Bourdelais AJ, Jacocks H, Michelliza S, Naar J (2005) Natural and derivative brevetoxins: Historical background, multiplicity, and effects. Environ Health Perspect 113: 621–625PubMedGoogle Scholar
  123. 123.
    Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Lett 43: 5829–5832CrossRefGoogle Scholar
  124. 124.
    Pierce RH, Henry MS, Blum PC, Hamel SL, Kirkpatrick B, Cheng YS, Zhou Y, Irvin CM, Naar J, Weidner A, Fleming LE, Backer LC, Baden DG (2005) Brevetoxin composition in water and marine aerosol along a Florida beach: Assessing potential human exposure to marine biotoxins. Harmful Algae 4: 965–972CrossRefGoogle Scholar
  125. 125.
    Alam M, Sanduja R, Hossain MB, van der Helm D (1982) Gymnodinium breve toxins. I. Isolation and X-ray structure of O,O-dipropyl (E)-2-(1-methyl-2-oxopropylidene)phosphorohydrazidothioate (E)-oxime from the red tide dinoflagellate Gymnodinium breve. J Am Chem Soc 104: 5232–5234CrossRefGoogle Scholar
  126. 126.
    Lin YY, Risk M, Ray SM, van Engen D, Clardy J, Golik J, James JC, Nakanishi K (1981) Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J Am Chem Soc 103: 6773–6775CrossRefGoogle Scholar
  127. 127.
    Shimizu Y, Chou HN, Bando H, van Duyne G, Clardy JC (1986) Structure of brevetoxin A (GB-1 toxin), the most potent toxin in the Florida red tide organism Gymnodinium breve (Ptychodiscus brevis). J Am Chem Soc 108: 515–516CrossRefGoogle Scholar
  128. 128.
    Plakas SM, Wang ZH, El Said KR, Jester ELE, Granade HR, Flewelling L, Scott P, Dickey RW (2004) Brevetoxin metabolism and elimination in the Eastern oyster (Crassostrea virginica) after controlled exposures to Karenia brevis. Toxicon 44: 677–685PubMedCrossRefGoogle Scholar
  129. 129.
    Wang Z, Plakas SM, El Said KR, Jester ELE, Granade HR, Dickey RW (2004) LC/MS analysis of brevetoxin metabolites in the Eastern oyster (Crassostrea virginica). Toxicon 43: 455–465PubMedCrossRefGoogle Scholar
  130. 130.
    Abraham A, Plakas SM, Wang ZH, Jester ELE, El Said KR, Granade HR, Henry MS, Blum PC, Pierce RH, Dickey RW (2006) Characterization of polar brevetoxin derivatives isolated from Karenia brevis cultures and natural blooms. Toxicon 48: 104–115PubMedCrossRefGoogle Scholar
  131. 131.
    Rein KS, Lynn B, Gawley RE, Baden DG (1994) Brevetoxin B: Chemical modifications, synaptosome binding, toxicity, and an unexpected conformational effect. J Org Chem 59: 2107–2113CrossRefGoogle Scholar
  132. 132.
    Bourdelais AJ, Campbell S, Jacocks H, Naar J, Wright J, Carsi J, Baden DG (2004) Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays. Cell Mol Neurobiol 24: 553–563PubMedCrossRefGoogle Scholar
  133. 133.
    Dechraoui MYB, Wacksman JJ, Ramsdell JS (2006) Species selective resistance of cardiac muscle voltage gated sodium channels: Characterization of brevetoxin and ciguatoxin binding sites in rats and fish. Toxicon 48: 702–712PubMedCrossRefGoogle Scholar
  134. 134.
    Murata M, Yasumoto T (2000) The structure elucidation and biological activities of high molecular weight algal toxins: Maitotoxin, prymnesins and zooxanthellatoxins. Nat Prod Rep 17: 293–314PubMedCrossRefGoogle Scholar
  135. 135.
    Murata M, Legrand AM, Ishibashi Y, Yasumoto T (1989) Structures of ciguatoxin and its congener. J Am Chem Soc 111: 8929–8931CrossRefGoogle Scholar
  136. 136.
    Murata M, Legrand AM, Ishibashi Y, Fukui M, Yasumoto T (1990) Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J Am Chem Soc 112: 4380–4386CrossRefGoogle Scholar
  137. 137.
    Legrand AM, Fukui M, Cruchet P, Yasumoto T (1992) Progress on chemical knowledge of ciguatoxins. Bull Soc Pathol Exot 85: 467–469PubMedGoogle Scholar
  138. 138.
    Lewis RJ, Sellin M, Poli MA, Norton RS, MacLeod JK, Sheil MM (1991) Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon 29: 1115–1127PubMedCrossRefGoogle Scholar
  139. 139.
    Poli MA, Lewis RJ, Dickey RJ, Musser SM, Buckner CA, Carpenter LG (1997) Identification of Caribbean ciguatoxins as the cause of an outbreak of fish poisoning among U.S. soldiers in Haiti. Toxicon 35: 733–741PubMedCrossRefGoogle Scholar
  140. 140.
    Satake M, Murata M, Yasumoto T (1993) The structure of CTX3C, a ciguatoxin congener isolated from cultured Gambierdiscus toxicus. Tetrahedron Lett 34: 1975–1978CrossRefGoogle Scholar
  141. 141.
    Satake M, Morohashi A, Oguri H, Oishi T, Hirama M, Harada N, Yasumoto T (1997) The absolute configuration of ciguatoxin. J Am Chem Soc 119: 11325–11326CrossRefGoogle Scholar
  142. 142.
    Satake M, Fukui M, Legrand AM, Cruchet P, Yasumoto T (1998) Isolation and structures of new ciguatoxin analogs, 2,3-dihydroxyCTX3C and 51-hydroxyCTX3C, accumulated in tropical reef fish. Tetrahedron Lett 39: 1197–1198CrossRefGoogle Scholar
  143. 143.
    Dickey RW (2008) Ciguatera toxins: Chemistry, toxicology and detection. In: LM Botana (ed.): Seafood and Freshwater Toxins — Pharmacology, Physiology and Detection, CRC Press, Taylor & Francis Group, Boca Raton, FL, 479–500Google Scholar
  144. 144.
    Chateau-Degat ML, Chinain M, Cerf N, Gingras S, Hubert B, Dewailly E (2005) Seawater temperature, Gambierdiscus spp. variability and incidence of ciguatera poisoning in French Polynesia. Harmful Algae 4: 1053–1062CrossRefGoogle Scholar
  145. 145.
    Yasumoto T, Nakajima I, Bagnis R, Adachi R (1977) Finding of a dinoflagellate as a likely culprit of ciguatera. Bull Jap Soc Sci Fish 43: 1021–1026Google Scholar
  146. 146.
    Adachi R, Fukuyo Y (1979) The thecal structure of a toxic marine dinoflagellate Gambierdiscus toxicus gen. et spec. nov. collected in a ciguatera-endemic area. Bull Jap Soc Sci Fish 45: 67–71Google Scholar
  147. 147.
    Aasen JAB, Hardstaff W, Aune T, Quilliam M (2006) Discovery of fatty acid ester metabolites of spirolide toxins in mussels from Norway using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20: 1531–1537PubMedCrossRefGoogle Scholar
  148. 148.
    Ciminiello P, Fattorusso E, Forino M, Poletti R, Viviani R (2000) Structure determination of carboxyhomoyessotoxin, a new yessotoxin analogue isolated from Adriatic mussels. Chem Res Toxicol 13: 770–774PubMedCrossRefGoogle Scholar
  149. 149.
    Miles CO, Wilkins AL, Selwood AI, Hawkes AD, Jensen DJ, Cooney JM, Beuzenberg V, MacKenzie AL (2006) Isolation of yessotoxin 32-O-[β-L-arabinofuranosyl-(5′→1″)-β-L-arabinofuranoside] from Protoceratium reticulatum. Toxicon 47: 510–516PubMedCrossRefGoogle Scholar
  150. 150.
    Castèle S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82: 883–892CrossRefGoogle Scholar
  151. 151.
    Hartshorne RP, Catterall WA (1984) The sodium channel from rat brain. Purification and subunit composition. J Biol Chem 259: 1667–1675PubMedGoogle Scholar
  152. 152.
    Hille B (1975) The receptor for tetrodotoxin and saxitoxin: A structural hypothesis. Biophys J 15: 615–619PubMedCrossRefGoogle Scholar
  153. 153.
    Hille B (1968) Pharmacological modifications of the sodium channels of frog nerves. J Gen Physiol 51: 199–219PubMedCrossRefGoogle Scholar
  154. 154.
    Wang J, Salata JJ, Bennett PB (2003) Saxitoxin is a gating modifier of hERG K+ channels. J Gen Physiol 121: 583–598PubMedCrossRefGoogle Scholar
  155. 155.
    Su Z, Sheets M, Hishida H, Li F, Barry WH (2004) Saxitoxin blocks L-type I Ca. J Pharmacol Exp Ther 308: 324–329PubMedCrossRefGoogle Scholar
  156. 156.
    Llewellyn LE (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 23: 200–222PubMedCrossRefGoogle Scholar
  157. 157.
    Lombert A, Bidard JN, Lazdunski M (1987) Ciguatoxins and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett 219: 355–357CrossRefGoogle Scholar
  158. 158.
    Randall JE (1958) A review of ciguatera, tropical fish poisoning, with a tentative explanation of its cause. Bull Mar Sci Gulf Carib 8: 236–267Google Scholar
  159. 159.
    Terao K (2000) Ciguatera toxins: Toxinology. In: LM Botana (ed.): Seafood and Freshwater Toxins, Marcel Dekker, New York, 449–472Google Scholar
  160. 160.
    Gusovsky F, Daly JL (1990) Maitotoxin: A unique pharmacological tool for research on calcium-dependent mechanisms. Biochem Pharmacol 39: 1633–1639PubMedCrossRefGoogle Scholar
  161. 161.
    Trevino CL, Escobar L, Vaca L, Morales-Tlalpan V, Ocampo AY, Darszon A (2008) Maitotoxin: Aunique pharmacological tool for elucidating Ca2+-dependent mechanisms. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 503–516Google Scholar
  162. 162.
    Morales-Tlalpan V, Vaca L (2002) Modulation of the maitotoxin response by intracellular and extracellular cations. Toxicon 40: 493–500PubMedCrossRefGoogle Scholar
  163. 163.
    Dietl P, Völkl H (1994) Maitotoxin activates a nonselective cation channel and stimulates Ca2+ entry in MDCK renal epithelial cells. Mol Pharmacol 45: 300–305PubMedGoogle Scholar
  164. 164.
    Estacion M, Nguyen HB, Gargus JJ (1996) Calcium is permeable through a maitotoxin-activated nonselective cation channel in mouse L cells. Am J Physiol 270: C1145–C1152PubMedGoogle Scholar
  165. 165.
    Leech CA, Habner JF (1997) Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 272: 17987–17993PubMedCrossRefGoogle Scholar
  166. 166.
    Ohizumi Y, Yasumoto T (1983) Contraction and increase in tissue calcium content induced by maitotoxin, the most potent known marine toxin, in intestinal smooth muscle. Br J Pharmacol 79: 3–5PubMedGoogle Scholar
  167. 167.
    Takahashi M, Tatsumi M, Ohizumi Y, Yasumoto T (1983) Ca2+ channel activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells. J Biol Chem 258: 10944–10949PubMedGoogle Scholar
  168. 168.
    Schettini G, Koike K, Login IS, Judd AM, Cronin MJ, Yasumoto T, MacLeod RM (1984) Maitotoxin stimulates hormonal release and calcium influx in rat anterior pituitary cells in vitro. Am J Physiol 247: E520–E525PubMedGoogle Scholar
  169. 169.
    Holz GG, Leech CA, Habener JF (2000) Insulinotropic toxins as molecular probes for analysis of glucagon-like peptide-1 receptor-mediated signal transduction in pancreatic β-cells. Biochimie 82: 915–926PubMedCrossRefGoogle Scholar
  170. 170.
    Gusovsky F, Daly JW, Yasumoto T, Rojas E (1988) Differential effects of maitotoxin on ATP secretion and on phosphoinositide breakdown in rat pheochromocytoma cells. FEBS Lett 233: 139–142PubMedCrossRefGoogle Scholar
  171. 171.
    Choi OH, Gusovsky F, Yasumoto T, Daly JW (1990) Maitotoxin: Effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells. Mol Pharmacol 37: 222–230PubMedGoogle Scholar
  172. 172.
    Gusovsky F, Yasumoto T, Daly JW (1989) Calcium-dependent effects of maitotoxin on phosphoinositide breakdown and on cyclic AMP accumulation in PC12 and NCB-20 cells. Mol Pharmacol 36: 44–53PubMedGoogle Scholar
  173. 173.
    Malaguti C, Yasumoto T, Rossini GP (1999) Transient Ca2+-dependent activation of ERK1 and ERK2 in cytotoxic responses induced by maitotoxin in breast cancer cells. FEBS Lett 458: 137–140PubMedCrossRefGoogle Scholar
  174. 174.
    Kobayashi M, Kondo S, Yasumoto T, Ohizumi Y (1986) Cardiotoxic effects of maitotoxin, a principal toxin of seafood poisoning, on guinea pig and rat cardiac muscle. J Pharmacol Exp Ther 238: 1077–1083PubMedGoogle Scholar
  175. 175.
    Terao K, Ito E, Sakamaki Y, Igarashi K, Yokoyama A, Yasumoto T (1988) Histopathological studies of experimental marine toxin poisoning. II. The acute effects of maitotoxin on the stomach, heart, and lymphoid tissues in mice and rats. Toxicon 26: 395–402PubMedCrossRefGoogle Scholar
  176. 176.
    Ghiaroni V, Sasaki M, Fuwa H, Rossini GP, Scalera G, Yasumoto T, Pietra P, Bigiani A (2005) Inhibition of voltage-gated potassium currents by gambiero in mouse taste cells. Toxicol Sci 85: 657–665PubMedCrossRefGoogle Scholar
  177. 177.
    Cuypers E, Abdel-Mottaleb Y, Kopljar I, Rainier JD, Raes AL, Snyders DJ, Tytgat J (2008) Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels. Toxicon 51: 974–983PubMedCrossRefGoogle Scholar
  178. 178.
    Louzao MC, Cagide E, Vieytes MR, Sasaki M, Fuwa H, Yasumoto T, Botana LM (2006) The sodium channel of human excitable cells is a target for gambierol. Cell Physiol Biochem 17: 257–268PubMedCrossRefGoogle Scholar
  179. 179.
    Sala GL, Ronzitti G, Sasaki M, Fuwa H, Yasumoto T, Bigiani A, Rossini GP (2009) Proteomic analysis reveals multiple patterns of response in cells exposed to a toxin mixture. Chem Res Toxicol 22: 1077–1085PubMedCrossRefGoogle Scholar
  180. 180.
    Habermann E, Chhatwal GS (1982) Ouabain inhibits the increase due to palytoxin of cationic permeability of erythrocytes. Naunyn-Schmeideberg’s Arch Pharmacol 319: 101–107CrossRefGoogle Scholar
  181. 181.
    Muramatsu I, Nishio M, Kigoshi S, Uemura D (1988) Single ionic channels induced by palytoxin in guinea-pig ventricular myocytes. Br J Pharmacol 93: 811–816PubMedGoogle Scholar
  182. 182.
    Ikeda M, Mitani K, Ito K (1988) Palytoxin induces a nonselective cation channel in single ventricular cells of rat. Naunyn-Schmeideberg’s Arch Pharmacol 337: 591–593Google Scholar
  183. 183.
    Artigas P, Gadsby DC (2003) Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc Natl Acad Sci USA 100: 501–505PubMedCrossRefGoogle Scholar
  184. 184.
    Artigas P, Gadsby DC (2004) Large diameter of palytoxin-induced the Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. J Gen Physiol 123: 357–376PubMedCrossRefGoogle Scholar
  185. 185.
    Artigas P, Gadsby DC (2006) Ouabain affinity determining residues lie close to the Na/K pump ion pathway. Proc Natl Acad Sci USA 103: 12613–12618PubMedCrossRefGoogle Scholar
  186. 186.
    Reyes N, Gadsby DC (2006) Ion permeation through the Na+/K+-ATPase. Nature 443: 470–474PubMedCrossRefGoogle Scholar
  187. 187.
    Takeuchi A, Reyes N, Artigas P, Gadsby DC (2008) The ion pathway through the opened Na+, K+-ATPase pump. Nature 456: 413–416PubMedCrossRefGoogle Scholar
  188. 188.
    Habermann E, Ahnert-Hilger G, Chhatwal GS, Beress L (1981) Delayed haemolytic action of palytoxin. General characteristics. Biochim Biophys Acta 649: 481–486PubMedCrossRefGoogle Scholar
  189. 189.
    Redondo J, Fiedler B, Scheiner-Bobis G (1996) Palytoxin-induced Na+ influx into yeast cells expressing the mammalian sodium pump is due to the formation of a channel within the enzyme. Mol Pharmacol 49: 49–57PubMedGoogle Scholar
  190. 190.
    Hirsh JK, Wu CH (1997) Palytoxin-induced single-channel currents from the sodium pump synthesized by in vitro expression. Toxicon 35: 169–176PubMedCrossRefGoogle Scholar
  191. 191.
    Frelin C, van Renterghem C (1995) Palytoxin. Recent electrophysiological and pharmacological evidence for several mechanisms of action. Gen Pharmacol 26: 33–37PubMedGoogle Scholar
  192. 192.
    Sauviat MP (1989) Effect of palytoxin on the calcium current and the mechanical activity of frog heart muscle. Br J Pharmacol 98: 773–780PubMedGoogle Scholar
  193. 193.
    Kockskämper J, Ahmmed GU, Zima AV, Sheehan KA, Glitsch HG, Blater LA (2004) Palytoxin disrupts cardiac excitation-contraction coupling through interactions with P-type ion pumps. Am J Cell Physiol 287: C527–C538CrossRefGoogle Scholar
  194. 194.
    Vale C, Alfonso A, Suñol C, Vieytes MR, Botana LM (2006) Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin. J Neurosci Res 83: 1393–1406PubMedCrossRefGoogle Scholar
  195. 195.
    Ito K, Karaki H, Urakawa N (1977) The mode of contractile action of palytoxin on vascular smooth muscle. Eur J Pharmacol 46: 9–14PubMedCrossRefGoogle Scholar
  196. 196.
    Frelin C, Vigne P, Breittmayer JP (1990) Palytoxin acidifies chick cardiac cells and activates the Na+/H+ antiporter. FEBS Lett 264: 63–66PubMedCrossRefGoogle Scholar
  197. 197.
    Yoshizumi M, Houchi H, Ishimura Y, Masuda Y, Morita K, Oka M (1991) Mechanism of palytoxin-induced Na+ influx into cultured bovine adrenal chromaffin cells: Possible involvement of Na+/H+ exchange system. Neurosci Lett 130: 103–106PubMedCrossRefGoogle Scholar
  198. 198.
    Monroe JJ, Tashjan AH Jr (1996) Palytoxin modulates cytosolic pH in human osteoblast-like Saos-2 cells via an interaction with Na+−K+-ATPase. Am J Physiol 270: C1277–C1283PubMedGoogle Scholar
  199. 199.
    Levine L, Fujiki H (1985) Stimulation of arachidonic acid metabolism by different types of tumor promoters. Carcinogenesis 6: 1631–1634PubMedCrossRefGoogle Scholar
  200. 200.
    Lazzaro M, Tshjian AH Jr, Fujiki H, Levine L (1987) Palytoxin: An extraordinary potent stimulator of prostaglandin production and bone resorption in cultured mouse clavariae. Endocrinology 120: 1338–1345PubMedCrossRefGoogle Scholar
  201. 201.
    Miura D, Kobayashi M, Kakiuchi S, Kasahara Y, Kondo S (2006) Enhancement of transformed foci and induction of prostaglandins in Balb/c 3T3 cells by palytoxin: In vitro model reproduces carcinogenic responses in animal models regarding the inhibitory effect of indomethacin and reversal of indomethacin’s effect by exogenous prostaglandins. Toxicol Sci 89: 154–163PubMedCrossRefGoogle Scholar
  202. 202.
    Nagase H, Karaki H (1987) Palytoxin-induced contraction and release of prostaglandins and norepinepfrine in the aorta. J Pharmacol Exp Ther 242: 1120–1125PubMedGoogle Scholar
  203. 203.
    Fujiki H, Suganuma M, Nakayasu M, Hakii H, Horiuchi T, Takayama S, Sugimura T (1986) Palytoxin is a non-12-O-tetradecanoylphorbol-13-acetate type tumor promoter in two-stage mouse skin carcinogenesis. Carcinogenesis 7: 707–710PubMedCrossRefGoogle Scholar
  204. 204.
    Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773: 1161–1176PubMedCrossRefGoogle Scholar
  205. 205.
    Wattenberg EV (2007) Palytoxin: Exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis. Am J Cell Physiol 292: C24–C32CrossRefGoogle Scholar
  206. 206.
    Bellocci M, Ronzitti G, Milandri A, Melchiorre N, Grillo C, Poletti R, Yasumoto T, Rossini GP (2008) A cytolytic assay for the measurement of palytoxin based on a cultured monolayer cell line. Anal Biochem 374: 48–55PubMedCrossRefGoogle Scholar
  207. 207.
    Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr 130: 1007S–1015SPubMedGoogle Scholar
  208. 208.
    Pulido OM (2008) Domoic acid toxicologic pathology: A review. Mar Drugs 6: 180–219PubMedGoogle Scholar
  209. 209.
    Doucette DA, Tasker RA (2008) Domoic acid: Detection methods, pharmacology, and toxicology. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 397–429Google Scholar
  210. 210.
    Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54: 581–618PubMedCrossRefGoogle Scholar
  211. 211.
    Lerma J, Paternain AV, Rodríguez-Moreno A, López-García J (2001) Molecular Physiology of kainate receptors. Physiol Rev 81: 971–998PubMedGoogle Scholar
  212. 212.
    Xi D, Ramsdell JS (1996) Glutamate receptors and calcium entry mechanisms for domoic acid in hippocampal neurons. Neuro Report 26: 1115–1120Google Scholar
  213. 213.
    Berman FW, LePage KT, Murray TF (2002) Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled by the NMDA receptor Ca2+ influx pathway. Brain Res 924: 20–29PubMedCrossRefGoogle Scholar
  214. 214.
    Brown JA, Njjar MS (1995) The release of glutamate and aspartate from rat brain synaptosomes in response to domoic acid (amnesic shellfish toxin) and kainic acid. Mol Cell Biochem 151: 49–54PubMedCrossRefGoogle Scholar
  215. 215.
    Malva JO, Carvalho AP, Carvalho CM (1996) Domoic acid induces the release of glutamate in the rat hippocampal CA3 sub-region. Neuro Report 7: 1330–1334Google Scholar
  216. 216.
    Berman FW, Murray TF (1997) Domoic acid neurotoxicity in cultured crebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. J Neurochem 69: 693–703PubMedCrossRefGoogle Scholar
  217. 217.
    Novelli A, Kispert J, Fernández-Sánchez MT, Torreblanca A, Zitko V (1992) Domoic acid-containing toxic mussels produce neurotoxicity in neuronal cultures through a synergism between excitatory amino acids. Brain Res 577: 41–48PubMedCrossRefGoogle Scholar
  218. 218.
    Berman FW, Murray TF (1996) Characterization of glutamate toxicity in cultured rat cerebellar granule neurons at reduced temperature. J Biochem Toxicol 11: 111–119PubMedCrossRefGoogle Scholar
  219. 219.
    Bowie D, Lange GD (2002) Functional stoichiometry of glutamate receptor desensitization. J Neurosci 22: 3392–3403PubMedGoogle Scholar
  220. 220.
    Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322: 1781–1787PubMedCrossRefGoogle Scholar
  221. 221.
    Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acid intoxication: Evidence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 37: 123–126PubMedCrossRefGoogle Scholar
  222. 222.
    Tasker RA, Strain SM, Drejer J (1996) Selective reduction in domoic acid toxicity in vivo by a novel non-N-methyl-d-aspartate receptor antagonist. Can J Physiol Pharmacol 74: 1047–1054PubMedCrossRefGoogle Scholar
  223. 223.
    Jakobsen B, Tasker A, Zimmer J (2002) Domoic acid neurotoxicity in hippocampal slice cultures. Amino Acids 23: 37–44PubMedCrossRefGoogle Scholar
  224. 224.
    Giordano G, White CC, Mohar I, Kavanagh TJ, Costa LG (2007) Glutathione levels modulate domoic acid induced apoptosis in mouse cerebellar granule cells. Toxicol Sci 100: 433–444PubMedCrossRefGoogle Scholar
  225. 225.
    Gill S, Murphy M, Clausen J, Richard D, Quilliam M, MacKinnon S, LaBlanc P, Mueller R, Pulido O (2003) Neural injury biomarkers of novel shellfish toxins, spirolides: A pilot study using immunochemical and transcriptional analysis. Neuro Toxicology 24: 593–604Google Scholar
  226. 226.
    Bialojan C, Takai A (1988) Inhibitory effect of a marine sponge toxin, okadaic acid, on protein phosphatases. Biochem J 256: 283–290PubMedGoogle Scholar
  227. 227.
    Takai A, Mieskes G (1991) Inhibitory effect of okadaic acid on the p-nitrophenyl phosphate phosphatase activity of protein phosphatases. Biochem J 275: 233–239PubMedGoogle Scholar
  228. 228.
    Krebs EG (1985) The phosphorylation of proteins: A major mechanism for biological regulation. Biochem Soc Trans 13: 813–820PubMedGoogle Scholar
  229. 229.
    Roach PJ (1991) Multisite and hierarchal protein phosphorylation. J Biol Chem 266: 14139–14142PubMedGoogle Scholar
  230. 230.
    Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7: 165–176PubMedCrossRefGoogle Scholar
  231. 231.
    Hunter T (1995) Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 80: 225–236PubMedCrossRefGoogle Scholar
  232. 232.
    Tolstykh T, Lee J, Vafai S, Stock JB (2000) Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J 19: 5682–5691PubMedCrossRefGoogle Scholar
  233. 233.
    Haystead TA, Sim ATR, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effects of the tumor promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337: 78–81PubMedCrossRefGoogle Scholar
  234. 234.
    Suganuma M, Fujiki H, Suguri H, Yoshizawa S, Hirota M, Nakayasu M, Ojika M, Wakamatsu K, Yamada K, Sugimura T (1988) Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci USA 85: 1768–1771PubMedCrossRefGoogle Scholar
  235. 235.
    Suganuma M, Tatematsu M, Yatsunami J, Yoshizawa S, Okabe S, Uemura D, Fujiki H (1992) An alternative theory of tissue specificity by tumor promotion of okadaic acid in glandular stomach of SD rats. Carcinogenesis 13: 1841–1845PubMedCrossRefGoogle Scholar
  236. 236.
    Berenblum I, Haran-Ghera N (1955) The significance of the sequence of initiating and promoting actions in the process of skin carcinogenesis in mouse. Br J Cancer 3: 268–271Google Scholar
  237. 237.
    Rossini GP (2000) Neoplastic activity of DSP toxins: The effects of okadaic acid and related compounds on cell proliferation: Tumor promotion or induction of apoptosis? In: LM Botana, (ed.). Seafood and Freshwater Toxins, Marcel Dekker, New York, 257–288Google Scholar
  238. 238.
    Tripuraneni J, Koutsoris A, Pestic L, De Lanerolle P, Hect G (1997) The toxin of diarrhetic shell-fish poisoning, okadaic acid, increases intestinal epithelial paracellular permeability. Gastroenterology 112: 100–108PubMedCrossRefGoogle Scholar
  239. 239.
    Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299: 551–572PubMedCrossRefGoogle Scholar
  240. 240.
    Malaguti C, Rossini GP (2002) Recovery of cellular E-cadherin precedes replenishment of estrogen receptor and estrogen-dependent proliferation of breast cancer cells rescued from a death stimulus. J Cell Physiol 192: 171–181PubMedCrossRefGoogle Scholar
  241. 241.
    Hosokawa M, Tsukada H, Saitou T, Kodama M, Onomura M, Nakamura H, Fukuda K, Seino Y (1998) Effects of okadaic acid on rat colon. Dig Dis Sci 43: 2526–2535PubMedCrossRefGoogle Scholar
  242. 242.
    EFSA (2008) Marine biotoxins in shellfish — Azaspiracid group, Scientific Opinion of the Panel on Contaminants in the Food chain EFSA J 723: 1–52Google Scholar
  243. 243.
    Tubaro A, Giangaspero A, Ardizzone M, Soranzo MR, Vita F, Yasumoto T, Maucher JM, Ramsdell JS, Sosa S (2008) Ultrastructural damage to heart tissue from repeated oral exposure to yessotoxin resolves in 3 months. Toxicon 51: 1225–1235PubMedCrossRefGoogle Scholar
  244. 244.
    Rossini GP, Ronzitti G, Callegari F (2006) The modes of action of yessotoxin and the toxic responses of cellular systems. In: F Goudey-Perrière, E Benoit, M Goyffon, P Marchot (eds): Toxines et Cancer, Lavoisier, Paris, 67–76Google Scholar
  245. 245.
    Paz B, Daranas AH, Norte M, Riobó P, Franco JM, Fernández JJ (2008) Yessotoxins, a group of marine polyether toxins: An overview. Mar Drugs 6: 73–102PubMedGoogle Scholar
  246. 246.
    Alfonso A, Alfonso C (2008) Pharmacology and mechanism of action: Biological detection. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 315–327Google Scholar
  247. 247.
    Twiner MJ, Hess P, Bottein Dechraoui MY, McMahon T, Samons MS, Satake M, Yasumoto T, Ramsdell JS, Doucette GJ (2005) Cytotoxic and cytoskeletal effects of azaspiracid-1 on mammalian cell lines. Toxicon 45: 891–900PubMedGoogle Scholar
  248. 248.
    Vilariño N, Nicolaou KC, Frederick MO, Cagide E, Ares IR, Louzao MC, Vieytes MR, Botana LM (2006) Cell growth inhibition and actin cytoskeleton disorganization induced by azaspiracid-1 structure-activity studies. Chem Res Toxicol 19: 1459–1466PubMedCrossRefGoogle Scholar
  249. 249.
    Ronzitti G, Hess P, Rehmann N, Rossini GP (2007) Azaspiracid-1 alters the E-cadherin pool in epithelial cells. Toxicol Sci 95: 427–435PubMedCrossRefGoogle Scholar
  250. 250.
    Vale C, Nicolaou KC, Frederick MO, Gómez-Limia B, Alfonso A, Vieytes MR, Botana LM (2007) Effects of azaspiracid-1, a potent cytotoxic agent, on primary neuronal cultures. A structure-activity relationship study. J Med Chem 50: 356–363PubMedCrossRefGoogle Scholar
  251. 251.
    Vale C, Gómez-Limia B, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM (2007) The c-Jun-N-terminal kinase is involved in the neurotoxic effect of azaspiracid-1. Cell Physiol Biochem 20: 957–966PubMedCrossRefGoogle Scholar
  252. 252.
    Twiner MJ, Ryan JC, Morey JS, van Dolah FM, Hess P, McMahon T, Doucette GJ (2008) Transcriptional profiling and inhibition of cholesterol biosynthesis in human T lymphocyte cells by the marine toxin azaspiracid. Genomics 91: 289–300PubMedCrossRefGoogle Scholar
  253. 253.
    Leira F, Alvarez C, Vieites JM, Vieytes MR, Botana LM (2002) Characterization of distinct apoptotic changes induced by okadaic acid and yessotoxin in the BE(2)-M17 neuroblastoma cell line. Toxicol in Vitro 16: 23–31PubMedCrossRefGoogle Scholar
  254. 254.
    Malaguti C, Ciminiello P, Fattorusso E, Rossini GP (2002) Caspase activation and death induced by yessotoxin in HeLa cells. Toxicol in Vitro 16: 357–363PubMedCrossRefGoogle Scholar
  255. 255.
    Pérez-Gomez A, Ferrero-Gutierrez A, Novelli A, Franco JM, Paz B, Fernández-Sánchez MT (2006) Potent neurotoxic action of the shellfish biotoxin yessotoxin on cultured crebellar neurons. Toxicol Sci 90: 168–177PubMedCrossRefGoogle Scholar
  256. 256.
    Malagoli D, Marchesini E, Ottaviani E (2006) Lysosomal as target of yessotoxin in invertebrate and vertebrate cells. Toxicol Lett 167: 75–83PubMedCrossRefGoogle Scholar
  257. 257.
    Dell’Ovo V, Bandi E, Coslovich T, Florio C, Sciancalepore M, Decorti G, Sosa S, Lorenzon P, Yasumoto T, Tubaro A (2008) In vitro effects of yessotoxin on a primary culture of rat cardiomyocytes. Toxicol Sci 106: 392–399PubMedCrossRefGoogle Scholar
  258. 258.
    Pierotti S, Malaguti C, Milandri A, Poletti R, Rossini GP (2003) Functional assay to measure yessotoxins in contaminated mussel samples. Anal Biochem 312: 208–216PubMedCrossRefGoogle Scholar
  259. 259.
    Ronzitti G, Callegari F, Malaguti C, Rossini GP (2004) Selective disruption of the E-cadherincatenin system by an algal toxin. Br J Cancer 90: 1100–1107PubMedCrossRefGoogle Scholar
  260. 260.
    Callegari F, Rossini GP (2008) Yessotoxin inhibits the complete degradation of E-cadherin. Toxicology 244: 133–144PubMedCrossRefGoogle Scholar
  261. 261.
    Callegari F, Sosa S, Ferrari S, Soranzo MR, Pierotti S, Yasumoto T, Tubaro A, Rossini GP (2006) Oral administration of yessotoxin stabilizes E-cadherin in mouse colon. Toxicology 227: 145–155PubMedCrossRefGoogle Scholar
  262. 262.
    Callegari F, Ronzitti G, Ferrari S, Rossini GP (2004) Yessotoxins alter the molecular structures of cell-cell adhesion in cultured cells. In: K Henshilwood, B Deegan, T McMahon, C Cusack, S Keaveney, J Silke, M O’Cinneide, D Lyions, P Hess (eds): Molluscan Shellfish Safety, Proceedings of the 5th International Conference on Molluscan Shellfish Safety; Galway, 407–413Google Scholar
  263. 263.
    Kellman R, Schaffner CAM, Grønset TA, Satake M, Ziegler M, Fladmark KE (2009) Proteomic response of human neuroblastoma cells to azaspiracid-1. J Proteomics 72: 695–707CrossRefGoogle Scholar
  264. 264.
    Young C, Truman P, Boucher M, Keyzers RA, Northcote P, Jordan TW (2009) The algal metabolite yessotoxin affects heterogeneous nuclear ribonucleoproteins in HepG2 cells. Proteomics 9: 2529–2542PubMedCrossRefGoogle Scholar
  265. 265.
    Munday R (2008) Toxicology of the pectenotoxins. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 371–380Google Scholar
  266. 266.
    Terao K, Ito E, Yanagi T, Yasumoto T (1986) Histopathological studies on experimental marine toxin poisoning. 1. Ultrastructural changes in the small intestine and liver of suckling mice induced by dinophysistoxin-1 and pectenotoxin-1. Toxicon 24: 1141–1151PubMedCrossRefGoogle Scholar
  267. 267.
    Zhou ZH, Komivama M, Terao K, Shimada Y (1994) Effects of pectenotoxin-1 on liver cells in vitro. Nat Toxins 2: 132–135PubMedCrossRefGoogle Scholar
  268. 268.
    Spector I, Braet F, Shochet NR, Bubb MR (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47: 18–37PubMedCrossRefGoogle Scholar
  269. 269.
    Hori M, Matsuura Y, Yoshimoto R, Ozaki H, Yasumoto T, Karaki H (1999) Actin depolymerizing action by marine toxin, pectenotoxin-2. Nippon Yakurigaku Zasshi 114: 225P–229PPubMedGoogle Scholar
  270. 270.
    Leira F, Cabado AG, Vieytes MR, Roman Y, Alfonso A, Botana LM, Yasumoto T, Malaguti C, Rossini GP (2002) The marine toxin pectenotoxin-6 induces in vitro depolymerization of F-actin in neuroblastoma cells. Biochem Pharmacol 63: 1979–1988PubMedCrossRefGoogle Scholar
  271. 271.
    Ares IR, Louzao MC, Vieytes MR, Yasumoto T, Botana LM (2005) Actin cytoskeleton of rabbit intestinal cells is a target for potent marine phycotoxins. J Exp Biol 208: 4345–4354PubMedCrossRefGoogle Scholar
  272. 272.
    Ares IR, Louzao MC, Espiña B, Vieytes MR, Miles CO, Yasumoto T, Botana LM (2007) Lactone ring of pectenotoxins: A key factor for their activity on cytoskeletal dynamics. Cell Phys Biochem 19: 283–292CrossRefGoogle Scholar
  273. 273.
    Allingham JS, Miles CO, Rayment I (2007) A structural basis for regulation of actin polymerization by pectenotoxins. J Mol Biol 371: 959–970PubMedCrossRefGoogle Scholar
  274. 274.
    Jung JH, Sim CJ, Lee CO (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58: 1722–1726PubMedCrossRefGoogle Scholar
  275. 275.
    Fladmark KE, Serres HM, Larsen NL, Yasumoto T, Aune T, Døskeland SO (1998) Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon 36: 1101–1114PubMedCrossRefGoogle Scholar
  276. 276.
    Chae HD, Choi TS, Kim BM, Jung YJ, Shin DY (2005) Oocyte-based screening of cytokinesis inhibitors and identification of pectenotoxin-2 that induces Bim/Bax-mediated apoptosis in p53-deficient tumors. Oncogene 24: 4813–4819PubMedCrossRefGoogle Scholar
  277. 277.
    Shin DY, Kim GY, Kim ND, Jung JH, Kim SK, Kang HS, Choi YH (2008) Induction of apoptosis by pectenotoxin-2 is mediated with the induction of DR4/DR5, Egr-1 and NAG-1, activation of caspases and modulation of the Bcl-2 family in p53-deficient Hep3B hepatocellular carcinoma cells. Oncol Rep 19: 517–526PubMedGoogle Scholar
  278. 278.
    Kim MO, Moon DO, Kang SH, Heo MS, Choi YH, Jung JH, Lee JD, Kim GY (2008) Pectenotoxin-2 represses telomerase activity in human leukemia cells through suppression of hTERT gene expression and Akt-dependent hTERT phosphorylation. FEBS Lett 582: 3263–3269PubMedCrossRefGoogle Scholar
  279. 279.
    Kim MO, Moon DO, Heo MS, Lee JD, Jung JH, Kim SK, Choi YH, Kim GY (2008) Pectenotoxin-2 abolishes constitutively activated NF-κB, leading to suppression of NF-κB related gene products and potentiation of apoptosis. Cancer Lett 271: 25–33PubMedCrossRefGoogle Scholar
  280. 280.
    Moon DO, Kim MO, Kang SH, Lee KJ, Heo MS, Choi KS, Choi YH, Kim GY (2008) Induction of G(2)/M arrest, endoreduplication, and apoptosis by actin depolymerization agent pectenotoxin-2 in human leukemia cells, involving activation of ERK and JNK. Biochem Pharmacol 76: 312–321PubMedCrossRefGoogle Scholar
  281. 281.
    Chae HD, Kim BM, Yun UJ, Shin DY (2008) Deregulation of Cdk2 causes Bim-mediated apoptosis in p53-deficient tumors following actin damage. Oncogene 27: 4115–4121PubMedCrossRefGoogle Scholar
  282. 282.
    Canete E, Diogene J (2008) Comparative study of the use of neuroblastoma cells (Neuro-2a) and neuroblastomaxglioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon 52: 541–550PubMedCrossRefGoogle Scholar
  283. 283.
    FAO (2004) Marine Biotoxins. FAO Food and Nutrition Paper 80. Food and Agriculture Organization, RomeGoogle Scholar
  284. 284.
    Gessner BD, McLaughlin JB (2008) Epidemiologic impact of toxic episodes: Neurotoxic toxins. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 77–103Google Scholar
  285. 285.
    Hwang KF, Noguchi T (2007) Tetrodotoxin poisoning. Adv Food Nutr Res 52: 141–236PubMedCrossRefGoogle Scholar
  286. 286.
    Gessner BD, Bell P, Doucette GJ, Moczydlowski E, Poli MA, van Dolah F, Hall S (1997) Hypertension and identification of toxin in human urine and serum following a cluster of mussel-associated paralytic shellfish poisoning outbreaks. Toxicon 35: 711–722PubMedCrossRefGoogle Scholar
  287. 287.
    Ishida H, Muramatsu M, Kosuge T, Tsuji K (1996) Study on neurotoxic shellfish poisoning involving New Zealand shellfish Crassostrea gigas. In: T Yasumoto, Y Oshima, Y Fukuyo (eds): Harmful and Toxic Algal Blooms, Intergovernmental Oceanographic Commission of UNESCO, 491–494Google Scholar
  288. 288.
    Baden DG, Mende TJ, Bikhazi G, Leung I (1982) Bronchoconstriction caused by Florida red tide toxins. Toxicon 20: 929–932PubMedCrossRefGoogle Scholar
  289. 289.
    Pierce R (1986) Red Tide (Ptychodiscus brevis) toxin aerosols: A review. Toxicon 24: 955–965PubMedCrossRefGoogle Scholar
  290. 290.
    Fleming LE, Backer LC, Baden DG (2005) Overview of aerosolized Florida red tide toxins: Exposures and effects. Environ Health Persp 113: 618–620CrossRefGoogle Scholar
  291. 291.
    Baden DG (1983) Marine foodborne dinoflagellate toxins. Int Rev Cytol 82: 99–150PubMedCrossRefGoogle Scholar
  292. 292.
    Mattei C, Molgó J, Legrand AM, Benoit E (1999) Ciguatoxins and brevetoxins: Dissection of their neurobiological actions. J Soc Biol 193: 329–344PubMedGoogle Scholar
  293. 293.
    Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322: 1775–1780PubMedCrossRefGoogle Scholar
  294. 294.
    Tasker RA, Connel BJ, Strain SM (1991) Pharmacology of systemically administered domoic acid in mice. Can J Physiol Pharmacol 69: 378–382PubMedGoogle Scholar
  295. 295.
    Jarrad LE, Meldrum BS (1993) Selective excitotoxic pathology in the rat hippocampus. Neuropathol Appl Neurobiol 19: 381–389CrossRefGoogle Scholar
  296. 296.
    Larm JA, Beart PM, Cheung NS (1997) Neurotoxic domoic acid produces cytotoxicity via kainate-and AMPA-sensitive receptors in cultured cortical neurones. Neurochem Int 31: 677–682PubMedCrossRefGoogle Scholar
  297. 297.
    Xi D, Peng YG, Ramsdell JS (1997) Domoic acid is a potent neurotoxin to neonatal rats. Nat Toxins 5: 74–79PubMedGoogle Scholar
  298. 298.
    Cordier S, Monfort C, Miossec L, Richardson S, Belin C (2000) Ecological analysis of digestive cancer mortality related to contamination by diarrhetic shellfish poisoning toxins along the coasts of France. Environ Res 84: 145–150PubMedCrossRefGoogle Scholar
  299. 299.
    Fleming LE, Baden DG, Bean JA, Weisman RS, Blythe DG (1998) Seafood toxin diseases: Issues in epidemiology and community outreach. In: B Reguera, J Blanco, ML Fernandez, T Wyatt (eds). Harmful Algae, Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, 245–248Google Scholar
  300. 300.
    Bagnis R, Kuberski T, Laugier S (1979) Clinical observations on 3009 cases of ciguatera (fish poisoning) in the South Pacific. Am J Trop Med Hyg 28: 1067–1073PubMedGoogle Scholar
  301. 301.
    Terao K, Ito E, Kakinuma Y, Igarashi K, Kobayashi M, Ohizumi Y, Yasumoto T (1989) Histopathological studies on experimental marine toxin poisoning. 4. Pathogenesis of experimental maitotoxin poisoning. Toxicon 27: 978–979Google Scholar
  302. 302.
    Blythe DG, De Sylva DP, Fleming LE, Ayyar RA, Baden DG, Shrank K (1992) Clinical experience with i.v. mannitol in the treatment of ciguatera. Bull Soc Pathol Exot 85: 425–426PubMedGoogle Scholar
  303. 303.
    Mattei C, Wen PJ, Nguyen-Huu TD, Alvarez M, Benoit E, Bourdelais AJ, Lewis RJ, Baden DG, Molgó J, Meunier FA (2008) Brevenal inhibits pacific ciguatoxin-1B-induced neurosecretion from bovine chromaffin cells. PLoS ONE 3: e3448.PubMedCrossRefGoogle Scholar
  304. 304.
    Munday R (2008) Occurrence and toxicology of palytoxins. In: LM Botana (ed.): Seafood and Freshwater Toxins, Pharmacology, Physiology and Detection, Taylor & Francis Ltd, Boca Raton, FL, 693–713Google Scholar
  305. 305.
    Hoffmann K, Hermanns-Clausen M, Buhl C, Büchler MW, Schemmer P, Mebs D, Kauferstein S (2008) A case of palytoxin poisoning due to contact with zoantid corals through a skin injury. Toxicon 51: 1535–1537PubMedCrossRefGoogle Scholar
  306. 306.
    Ciminiello P, Dell’ Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Grillo C, Melchiorre N (2006) The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal Chem 78: 6153–6159PubMedCrossRefGoogle Scholar
  307. 307.
    Okano H, Masuoka H, Kamei S, Seko T, Koyabu S, Tsuneoka K, Tamai T, Ueda K, Nakazawa S, Sugawa M, Suzuki H, Watanabe M, Yatani R, Nakano T (1998) Rhabdomyolysis and myocardial damage induced by palytoxin, a toxin of blue humphead parrotfish. Intern Med 37: 330–333PubMedCrossRefGoogle Scholar
  308. 308.
    Ito E, Satake M, Ofuji K, Kurita N, McMahon T, James K, Yasumoto T (2000) Multiple organ damage caused by a new toxin azaspiracid, isolated from mussels produced in Ireland. Toxicon 38: 917–930PubMedCrossRefGoogle Scholar
  309. 309.
    Ito E, Satake M, Ofuji K, Higashi M, Harigaya K, McMahon T, Yasumoto T (2002) Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a new marine toxin isolated from mussels. Toxicon 40: 193–203PubMedCrossRefGoogle Scholar
  310. 310.
    EFSA (2009) Marine biotoxins in shellfish — Yessotoxin group, Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J 907: 1–62Google Scholar
  311. 311.
    Paolo S, Di Fiore PP (2006) Endocytosis conducts the cell signaling orchestra. Cell 124: 897–900CrossRefGoogle Scholar
  312. 312.
    Orsi CF, Colombari B, Callegari F, Todaro AM, Ardizzoni A, Rossini GP, Blasi E, Peppoloni S (2009) Yessotoxin inhibits phagocytic activity of macrophages. Toxicon, in press Google Scholar
  313. 313.
    Larsen K, Petersen D, Wilkins AL, Samdal IA, Sandvik M, Rundberget T, Goldstone D, Arcus V, Hovgaard P, Rise F, Rehmann N, Hess P, Miles CO (2007) Clarification of the C-35 stereochemistries of dinophysistoxin-1 and dinophysistoxin-2, and its consequences for binding to protein phosphatase. Chem Res Toxicol 20: 868–875PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2010

Authors and Affiliations

  • Gian Paolo Rossini
    • 1
  • Philipp Hess
    • 2
  1. 1.Dipartimento di Scienze BiomedicheUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Department of Environment, Microbiology and PhycotoxinsIFREMERNantes Cedex 03France

Personalised recommendations