Skip to main content

Forensic toxicology

  • Chapter

Part of the book series: Experientia Supplementum ((EXS,volume 100))

Abstract

Forensic toxicology has developed as a forensic science in recent years and is now widely used to assist in death investigations, in civil and criminal matters involving drug use, in drugs of abuse testing in correctional settings and custodial medicine, in road and work-place safety, in matters involving environmental pollution, as well as in sports doping. Drugs most commonly targeted include amphetamines, benzodiazepines, cannabis, cocaine and the opiates, but can be any other illicit substance or almost any over-the-counter or prescribed drug, as well as poisons available to the community. The discripline requires high level skills in analytical techniques with a solid knowledge of pharmacology and pharmacokinetics. Modern techniques rely heavily on immunoassay screening analyses and mass spectrometry (MS) for confirmatory analyses using either high-performance liquid chromatography or gas chromatography as the separation technique. Tandem MS has become more and more popular compared to single-stage MS. It is essential that analytical systems are fully validated and fit for the purpose and the assay batches are monitored with quality controls. External proficiency programs monitor both the assay and the personnel performing the work. For a laboratory to perform optimally, it is vital that the circumstances and context of the case are known and the laboratory understands the limitations of the analytical systems used including drug stability. Drugs and poisons can change concentration postmortem due to poor or unequal quality of blood and other specimens, anaerobic metabolism and redistribution. The latter provides the largest handicap in the interpretation of postmortem results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer J, Drummer OH, Maurer HH (2009) Analysis of toxic alkaloids in body samples. Forensic Sci Int 185: 1–9

    Article  CAS  PubMed  Google Scholar 

  2. Hlastala MP (1998) The alcohol breath test — A review. J Appl Physiol 84: 401–408

    Article  CAS  PubMed  Google Scholar 

  3. Mason MF, Dubowski KM (1976) Breath-alcohol analysis: Uses, methods, and some forensic problems — Review and opinion. J Forensic Sci 21: 9–41

    CAS  PubMed  Google Scholar 

  4. Kugelberg FC, Jones AW (2007) Interpreting results of ethanol analysis in postmortem specimens: A review of the literature. Forensic Sci Int 165: 10–29

    Article  CAS  PubMed  Google Scholar 

  5. Drummer OH (2006) Drug testing in oral fluid. Clin Biochem Rev 27: 147–159

    PubMed  Google Scholar 

  6. Boorman M, Owens K (2009) The Victorian legislative framework for the random testing drivers at the roadside for the presence of illicit drugs: An evaluation of the characteristics of drivers detected from 2004 to 2006. Traffic Inj Prev 10: 16–22

    Article  PubMed  Google Scholar 

  7. Palmer RB (2009) A review of the use of ethyl, glucuronide as a marker for ethanol consumption in forensic and clinical medicine. Semin Diagn Pathol 26: 18–27

    Article  PubMed  Google Scholar 

  8. Yegles M, Labarthe A, Auwarter V, Hartwig S, Vater H, Wennig R, Pragst F (2004) Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers. Forensic Sci Int 145: 167–173

    Article  CAS  PubMed  Google Scholar 

  9. Musshoff F, Madea B (2007) New trends in hair analysis and scientific demands on validation and technical notes. Forensic Sci Int 165: 204–215

    Article  CAS  PubMed  Google Scholar 

  10. LeBeau MA (2008) Guidance for improved detection of drugs used to facilitate crimes. Ther, Drug Monit 30: 229–233

    Article  CAS  Google Scholar 

  11. Trout GJ, Kazlauskas R (2004) Sports drug testing — An analyst’s perspective. Chem Soc Rev 33: 1–13

    Article  CAS  PubMed  Google Scholar 

  12. Thevis M, Schanzer W (2007) Mass spectrometry in sports drug testing: Structure characterization and analytical assays. Mass Spectrom Rev 26: 79–107

    Article  CAS  PubMed  Google Scholar 

  13. Yu NH, Ho EN, Tang FP, Wan TS, Wong AS (2008) Comprehensive screening of acidic and neutral drugs in equine plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1189: 426–434

    Article  CAS  PubMed  Google Scholar 

  14. Murphy B, Morrison R (2007) Introduction to Environmental Forensics, 2nd edn., Academic Press, New York, 776

    Google Scholar 

  15. Simoneit BR (1999) A review of biomarker compounds as source indicatiors and tracers for air pollution. Environ Sci Pollut Res Int 6: 159–169

    Article  CAS  PubMed  Google Scholar 

  16. Flanagan RJ, Connally G, Evans JM (2005) Analytical toxicology: Guidelines for sample, collection postmortem. Toxicol Rev 241: 63–71

    Article  Google Scholar 

  17. Verstraete AG, Pierce A (2001) Workplace drug testing in Europe. Forensic Sci Int 121: 2–6.

    Article  CAS  PubMed  Google Scholar 

  18. ElSohly MA, Gul W, Murphy TP, Avula B, Khan IA (2007) LC-(TOF) MS analysis of benzodiazepines in urine from alleged victims of drug-facilitated sexual assault. J Anal Toxicol 31: 505–514

    CAS  PubMed  Google Scholar 

  19. Lu NT, Taylor BG (2006) Drug screening and confirmation by GC-MS: Comparison of EMIT II and Online KIMS against 10 drugs between US and England laboratories. Forensic Sci Int 157: 106–116

    Article  CAS  PubMed  Google Scholar 

  20. Arndt T (2009) Urine-creatinine concentration as a marker of urine dilution: Reflections using a cohort of 45,000 samples. Forensic Sci Int 186: 48–51

    Article  CAS  PubMed  Google Scholar 

  21. Kintz P (2007) Bioanalytical procedures for detection of chemical agents in hair in the case of drug-facilitated crimes. Anal Bioanal Chem 388: 1467–1474

    Article  CAS  PubMed  Google Scholar 

  22. Balikova M (2005) Hair analysis for drugs of abuse. Plausibility of interpretation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149: 199–207

    CAS  PubMed  Google Scholar 

  23. Kintz P, Villain M, Cirimele V (2006) Hair analysis for drug detection. Ther Drug Monit 28: 442–446

    Article  CAS  PubMed  Google Scholar 

  24. Aps JK, Martens LC (2005) The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 150: 119–131

    Article  CAS  PubMed  Google Scholar 

  25. Drummer OH (2005) Pharmacokinetics of illicit drugs in oral fluid. Forensic Sci Int 150: 133–142

    Article  CAS  PubMed  Google Scholar 

  26. Verstraete AG (2005) Oral fluid testing for driving under the influence of drugs: History, recent progress and remaining challenges. Forensic Sci Int 150: 143–150

    Article  CAS  PubMed  Google Scholar 

  27. Drummer OH, Gerostamoulos D, Chu M, Swann P, Boorman M, Cairns I (2007) Drugs in oral fluid in randomly selected drivers. Forensic Sci Int 170: 105–110

    Article  CAS  PubMed  Google Scholar 

  28. Bush DM (2008) The U.S. Mandatory Guidelines for Federal Workplace Drug Testing Programs: Current status and future considerations. Forensic Sci Int 174: 111–119

    Article  PubMed  Google Scholar 

  29. Drummer OH (2008) Introduction and review of collection techniques and applications of drug testing of oral fluid. Ther Drug Monit 30: 203–206

    CAS  PubMed  Google Scholar 

  30. Drummer OH (2004) Postmortem toxicology of drugs of abuse. Forensic Sci Int 142: 101–113

    Article  CAS  PubMed  Google Scholar 

  31. Drummer OH (2007) Requirements for bioanalytical procedures in postmortem toxicology. Anal Bioanal Chem 388: 1495–1503

    Article  CAS  PubMed  Google Scholar 

  32. Drummer OH (1999) Chromatographic screening techniques in systematic toxicological analysis. J Chromatogr B Biomed Sci Appl 733: 27–45

    Article  CAS  PubMed  Google Scholar 

  33. Degel F (1996) Comparison of new solid-phase extraction methods for chromatographic identification of drugs in clinical toxicological analysis. Clin Biochem 29: 529–540

    Article  CAS  PubMed  Google Scholar 

  34. Nerin C, Salafranca J, Aznar M, Batlle R (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393: 809–833

    Article  CAS  PubMed  Google Scholar 

  35. Pragst F (2007) Application of solid-phase microextraction in analytical toxicology. Anal Bioanal Chem 388: 1393–1414

    Article  CAS  PubMed  Google Scholar 

  36. Peters FT, Drvarov O, Lottner S, Spellmeier A, Rieger K, Haefeli WE, Maurer HH (2009) A systematic comparison of four different workup procedures for systematic toxicological analysis of urine samples using gas chromatography-mass spectrometry. Anal Bioanal Chem 393: 735–745

    Article  CAS  PubMed  Google Scholar 

  37. Skopp G (2004) Preanalytic aspects in postmortem toxicology. Forensic Sci Int 142: 75–100

    Article  CAS  PubMed  Google Scholar 

  38. Wu AH, Forte E, Casella G, Sun K, Hemphill G, Foery R, Schanzenbach H (1995) CEDIA for screening drugs of abuse in urine and the effect of adulterants. J Forensic Sci 40: 614–618

    CAS  PubMed  Google Scholar 

  39. Maurer HH (1992) Systematic toxicological analysis of drugs and their metabolites by gas chromatography-mass spectrometry. J Chromatogr 580: 3–41

    Article  CAS  PubMed  Google Scholar 

  40. Gergov M, Boucher B, Ojanpera I, Vuori E (2001) Toxicological screening of urine for drugs by liquid chromatography/time-of-flight mass spectrometry with automated target library search based on elemental formulas. Rapid Commun Mass Spectrom 15: 521–526

    Article  CAS  PubMed  Google Scholar 

  41. Ojanpera S, Pelander A, Pelzing M, Krebs I, Vuori E, Ojanpera I (2006) Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 20: 1161–1167

    Article  CAS  PubMed  Google Scholar 

  42. Song SM, Marriott P, Kotsos A, Drummer OH, Wynne P (2004) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) for drug screening and confirmation. Forensic Sci Int 143: 87–101

    Article  CAS  PubMed  Google Scholar 

  43. Lowe RH, Karschner EL, Schwilke EW, Barnes AJ, Huestis MA (2007) Simultaneous quantification of Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in human plasma using two-dimensional gas chromatography, cryofocusing, and electron impact-mass spectrometry. J Chromatogr A 1163: 318–327

    Article  CAS  PubMed  Google Scholar 

  44. Maurer HH (1999) Systematic toxicological analysis procedures for acidic drugs and/or metabolites relevant to clinical and forensic toxicology and/or doping control. J Chromatogr B Biomed Sci Appl 733: 3–25

    Article  CAS  PubMed  Google Scholar 

  45. Tagliaro F, Bortolotti F, Pascali JP (2007) Current role of capillary electrophoretic/electrokinetic techniques in forensic toxicology. Anal Bioanal Chem 388: 1359–1364

    Article  CAS  PubMed  Google Scholar 

  46. Lurie IS (1997) Application of micellar electrokinetic capillary chromatography to the analysis of illicit drug seizures. J Chromatogr A 780: 265–284

    Article  CAS  PubMed  Google Scholar 

  47. Tagliaro F, Turrina S, Pisi P, Smith FP, Marigo M (1998) Determination of illicit and/or abused drugs and compounds of forensic interest in biosamples by capillary electrophoretic/electrokinetic methods. J Chromatogr B Biomed Sci Appl 713: 27–49

    Article  CAS  PubMed  Google Scholar 

  48. Pelander A, Backstrom D, Ojanpera I (2007) Qualitative screening for basic drugs in autopsy liver samples by dual-plate overpressured layer chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 857: 337–340

    Article  CAS  PubMed  Google Scholar 

  49. Santos LS, Haddad R, Hoehr NF, Pilli RA, Eberlin MN (2004) Fast screening of low molecular weight compounds by thin-layer chromatography and “on-spot” MALDI-TOF mass spectrometry. Anal Chem 76: 2144–2147

    Article  CAS  PubMed  Google Scholar 

  50. Sauvage FL, Gaulier JM, Lachatre G, Marquet P (2008) Pitfalls and prevention strategies for liquid chromatography-tandem mass spectrometry in the selected reaction-monitoring mode for drug analysis. Clin Chem 54: 1519–1527

    Article  CAS  PubMed  Google Scholar 

  51. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165: 216–224

    Article  CAS  PubMed  Google Scholar 

  52. Clarke J, Wilson JF (2005) Proficiency testing (external quality assessment) of drug detection in oral fluid. Forensic Sci Int 150: 161–164

    Article  PubMed  Google Scholar 

  53. Flanagan RJ, Whelpton R (2009) Quality Management. Encyclopedia of Forensic Science, Wiley, London, in press

    Google Scholar 

  54. Lee S, Park Y, Han E, Choe S, Lim M, Chung H (2008) Preparation and application of a fortified hair reference material for the determination of methamphetamine and amphetamine. Forensic Sci Int 178: 207–212

    Article  CAS  PubMed  Google Scholar 

  55. Ventura M, Ventura R, Pichini S, Leal S, Zuccaro P, Pacifici R, Langohr K, de la Torre R (2008) ORALVEQ: External quality assessment scheme of drugs of abuse in oral fluid: Results obtained in the first round performed in 2007. Forensic Sci Int 182: 35–40

    Article  CAS  PubMed  Google Scholar 

  56. Al-Hadidi KA, Oliver JS (1995) Stability of temazepam in blood. Sci Justice 35: 105–108

    Article  CAS  PubMed  Google Scholar 

  57. Levine B, Blanke RV, Valentour JC (1983) Postmortem stability of benzodiazepines in blood and tissues. J Forensic Sci 28: 102–115

    CAS  PubMed  Google Scholar 

  58. Drummer OH, Gerostamoulos J (2002) Postmortem drug analysis: Analytical and toxicological aspects. Ther Drug Monit 24: 199–209

    Article  CAS  PubMed  Google Scholar 

  59. Couper FJ, Drummer OH (1999) Postmortem stability and interpretation of β2-agonist concentrations. J Forensic Sci 44: 523–526

    CAS  PubMed  Google Scholar 

  60. Robertson MD, Drummer OH (1998) Stability of nitrobenzodiazepines in postmortem blood. J Forensic Sci 43: 5–8

    CAS  PubMed  Google Scholar 

  61. Batziris HP, McIntyre IM, Drummer OH (1999) The effect of sulfur-metabolising bacteria on sulfur-containing psychotropic drugs. Int Biodeter Biodegrad 44: 111–116

    Article  CAS  Google Scholar 

  62. Moriya F, Hashimoto Y (1997) Distribution of free and conjugated morphine in body fluids and tissues in a fatal heroin overdose: Is conjugated morphine stable in postmortem specimens? J Forensic Sci 42: 736–740

    CAS  PubMed  Google Scholar 

  63. Robertson MD, Drummer OH (1995) Postmortem drug metabolism by bacteria. J Forensic Sci 40: 382–386

    CAS  PubMed  Google Scholar 

  64. Moriya F, Hashimoto Y, Kuo TL (1999) Pitfalls when determining tissue distributions of organophosphorus chemicals: Sodium fluoride accelerates chemical degradation. J Anal Toxicol 23: 210–215

    CAS  PubMed  Google Scholar 

  65. Schwilke EW, Karschner EL, Lowe RH, Gordon AM, Cadet JL, Herning RI, Huestis MA (2009) Intra-and intersubject whole blood/plasma cannabinoid ratios determined by 2-dimensional, electron impact GC-MS with cryofocusing. Clin Chem 55: 1188–1195

    Article  CAS  PubMed  Google Scholar 

  66. Flanagan RJ, Yusufi B, Barnes TR (2003) Comparability of whole-blood and plasma clozapine and norclozapine concentrations. Br J Clin Pharmacol 56: 135–138

    Article  CAS  PubMed  Google Scholar 

  67. Brocks DR, Skeith KJ, Johnston C, Emamibafrani J, Davis P, Russell AS, Jamali F (1994) Hematologic disposition of hydroxychloroquine enantiomers. J Clin Pharmacol 34: 1088–1097

    CAS  PubMed  Google Scholar 

  68. Briglia EJ, Bidanset JH, Dal Cortivo LA (1992) The distribution of ethanol in postmortem blood specimens. J Forensic Sci 37: 991–998

    CAS  PubMed  Google Scholar 

  69. Sylvester PA, Wong NA, Warren BF, Ranson DL (1998) Unacceptably high site variability in postmortem blood alcohol analysis. J Clin Pathol 51: 250–252

    Article  CAS  PubMed  Google Scholar 

  70. Berankova K, Mutnanska K, Balikova M (2006) Gamma-hydroxybutyric acid stability and formation in blood and urine. Forensic Sci Int 161: 158–162

    Article  CAS  PubMed  Google Scholar 

  71. Barnhart FE, Fogacci JR, Reed DW (1999) Methamphetamine — A study of postmortem redistribution. J Anal Toxicol 23: 69–70

    CAS  PubMed  Google Scholar 

  72. Hilberg T, Rogde S, Morland J (1999) Postmortem drug redistribution —Human cases related to results in experimental animals. J Forensic Sci 44: 3–9

    CAS  PubMed  Google Scholar 

  73. Jaffe P (1997) The Distribution and Redistribution of Four Serotonin Reuptake Inhibitors in Postmortem Specimens, Monash University, Melbourne

    Google Scholar 

  74. Moriya F, Hashimoto Y (2000) Redistribution of methamphetamine in the early postmortem period. J Anal Toxicol 24: 153–155

    CAS  PubMed  Google Scholar 

  75. Pounder DJ, Jones GR (1990) Postmortem drug redistribution — A toxicological nightmare. Forensic Sci Int 45: 253–263

    Article  CAS  PubMed  Google Scholar 

  76. Moriya F, Hashimoto Y (1999) Redistribution of basic drugs into cardiac blood from surrounding tissues during early-stages postmortem. J Forensic Sci 44: 10–16

    CAS  PubMed  Google Scholar 

  77. Drummer OH (2008) Postmortem toxicological redistribution In: GN Rutty (ed.): Essentials of Autopsy Practice, Volume 4, Springer-Verlag, Berlin pp. 1–21

    Chapter  Google Scholar 

  78. Rodda KE, Drummer OH (2006) The redistribution of selected psychitric drugs in post-mortem cases. Forensic Sci Int 164: 235–239

    Article  CAS  PubMed  Google Scholar 

  79. Caplehorn JR, Drummer OH (2002) Methadone dose and post-mortem blood concentration. Drug Alcohol Rev 21: 329–333

    Article  PubMed  Google Scholar 

  80. Logan BK, Snirnow D (1996) Postmortem distribution and redistribution of morphine in man. J Forensic Sci 41: 37–46

    Google Scholar 

  81. Gerostamoulos J, Drummer OH (2000) Postmortem redistribution of morphine and its metabolites. J Forensic Sci, in press

    Google Scholar 

  82. Robertson MD, Drummer OH (1998) Postmortem distribution and redistribution of nitrobenzodiazepines in man. J Forensci Sci 43: 9–13

    CAS  Google Scholar 

  83. Caplehorn JR, Drummer OH (1999) Mortality associated with New South Wales methadone programs in 1994: Lives lost and saved. Med J Aust 170: 104–109

    CAS  PubMed  Google Scholar 

  84. Drummer OH, Syrjanen M, Opeskin K, Cordner S (1990) Deaths of heroin addicts starting on a methadone maintenance programme. Lancet 335: 108

    Article  CAS  PubMed  Google Scholar 

  85. Milroy CM, Forrest ARW (2000) Methadone deaths: A toxicological analysis. J Clin Pathol 53: 277–281

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Drummer, O.H. (2010). Forensic toxicology. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_18

Download citation

Publish with us

Policies and ethics