Biological warfare agents

  • Miroslav Pohanka
  • Kamil Kuča
Part of the Experientia Supplementum book series (EXS, volume 100)


Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.


Botulinum Toxin Bacillus Anthracis Rift Valley Fever Yersinia Pestis Rift Valley Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kortepeter MG, Cieslak TJ, Eitzen EM (2001) Bioterrorism. J Environ Health 63: 21–24PubMedGoogle Scholar
  2. 2.
    Agarwal R, Shukla SK, Dharmani S, Gandhi A (2004) Biological warfare — An emerging threat. J Assoc Physicians India 52: 733–738PubMedGoogle Scholar
  3. 3.
    Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM (1997) Biological warfare: A historical perspective. J Am Med Assoc 278: 412–417Google Scholar
  4. 4.
    Mayor A (1997) Dirty tricks in ancient warfare. Mil Hist Quart 10: 1–37Google Scholar
  5. 5.
    Derbes VJ (1966) De mussis and the Great Plaque of 1348: A forgotten episode in bacteriological war. J Am Med Assoc 196: 59–62Google Scholar
  6. 6.
    Poupard JA, Miller LA (1992) History of biological warfare: Catapults to capsomeres. Ann NY Acad Sci 666: 9–20PubMedGoogle Scholar
  7. 7.
    Millett PD (2006) The biological and toxin weapons convention. Rev Sci Tech 25: 35–52PubMedGoogle Scholar
  8. 8.
    Harris S (1992) Japanese biological warfare research on humans: A case study on microbiology and ethics. Ann NY Acad Sci 666: 21–52PubMedGoogle Scholar
  9. 9.
    Klietmann WF, Ruoff KL (2001) Bioterrorism: Implications for the clinical microbiologist. Clin Microbiol Rev 14: 364–381PubMedGoogle Scholar
  10. 10.
    Torok TJ, Tauxe RV, Wise RP, Livengood JR, Sokolow R, Mauvais S, Birkness KA, Skeels MR, Horan JM, Foster LR (1997) A large community outbreak of salmonellosis caused by international contamination of restaurant salad bars. J Am Med Assoc 278: 389–395Google Scholar
  11. 11.
    Olson KB (1999) Aum Shinrikyo: Once and future threat?. Emerg Infect Dis 5: 513–516PubMedGoogle Scholar
  12. 12.
    Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K, Adair DM, Hugh-Jones, M, Kuske CR, Jackson P (1997) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 1979: 818–824Google Scholar
  13. 13.
    Walker DH, Yampolska O, Grinberg LM (1994) Death at Sverdlovsk: What have we learned?. Am J Pathol 1994: 1135–1141Google Scholar
  14. 14.
    Wilkening DA (2006) Sverdlovsk revisted: Modeling human inhalation anthrax. Proc Natl Acad Sci USA 2006: 7589–7594Google Scholar
  15. 15.
    Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Phil Trans R Soc Lond B 356: 983–989Google Scholar
  16. 16.
    NATO (1996) NATO Handbook on the Medical Aspects of NBC Defensive Operations. Part II — Biolgical, AMedP-6 (B), Department of the Army, Washington D.C.Google Scholar
  17. 17.
    Kaufmann AF, Meltzer MI, Schmid GP (1997) The economic impact of a bioterrorist attack: Are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3: 83–94PubMedGoogle Scholar
  18. 18.
    Bradburne C, Chung MC, Zong Q, Schlauch K, Liu D, Popova T, Popova A, Bailey C, Soppet D, Popov S (2008) Transcriptional and apoptotic responses of THP-1 cells to challenge with toxigenic, and non-toxigenic. Bacillus anthracis. BMC Immunol 13: 9–67Google Scholar
  19. 19.
    Nguyen ML, Crowe SR, Kurella S, Teryzan S, Cao B, Ballard JD, James JA, Farris AD (2009) Sequential B-cell epitopes of Bacillus anthracis lethal factor bind lethal toxin-neutralizing antibodies. Infect Immun 77: 162–169PubMedGoogle Scholar
  20. 20.
    Griffin KF, Oyston PC, Titball RW (2007) Francisella tularensis vaccines. FEMS Immunol Med Microbiol 49: 315–323PubMedGoogle Scholar
  21. 21.
    Isherwood KE, Titball RW, Davies DH, Felgner PL, Morrow WJ (2005) Vaccination strategies for Francisella tularensis. Adv Drug Deliv Rev 57: 1403–1414PubMedGoogle Scholar
  22. 22.
    Turnbull PCB (1999) Definitive identification of Bacillus anthracis — A review. J Appl Microbiol 87: 237–240PubMedGoogle Scholar
  23. 23.
    Baillie L, Read TD (2001) Bacillus anthracis, a bug with attitude! Curr Opin Microbiol 4: 78–81PubMedGoogle Scholar
  24. 24.
    Titball RW, Turnbull PCB, Huston RA (1991) The monitoring and detection of Bacillus anthracis in the environment. J Appl Bacteriol Symp 70: 9–18Google Scholar
  25. 25.
    Riedel S (2005) Anthrax: A continuing concern in the era of bioterrorism. BUMC Proc 18: 234–243Google Scholar
  26. 26.
    Mc Sherry J, Kilpatrick R (1992) The plague of Athens. J R Soc Med 85: 713–713Google Scholar
  27. 27.
    Theodorides J (1993) The plague of Athens. J Roy Soc Med 86: 244–244Google Scholar
  28. 28.
    LaForce FM (1994) Anthrax. Clin Infect Dis 19: 1009–1014PubMedGoogle Scholar
  29. 29.
    Patocka J, Splino M (2002) Anthrax toxin characterization. Acta Med 45: 3–5Google Scholar
  30. 30.
    Sirard JC, Guidi-Rontani C, Rouet A, Mock M (2000) Characterization of a plasmid region involved in Bacillus anthracis toxin production and pathogenesis. Int J Med Microbiol 290: 313–316PubMedGoogle Scholar
  31. 31.
    Bhatnagar R, Batra S (2001) Anthrax toxin. Crit Rev Microbiol 27: 167–200PubMedGoogle Scholar
  32. 32.
    Guildi-Rontani C, Weber-Levy M, Mock M, Cabiaux V (2000) Translocation of Bacillus anthracis lethal and oedema factors across endosome membranes. Cell Microbiol 2: 259–264Google Scholar
  33. 33.
    Duesbery NS, Vande Woude GF (1999) Anthrax lethal factor causes proteolytic inactivation of mitogen-activated protein kinase kinase. J Appl Microbil 87: 289–293Google Scholar
  34. 34.
    Zhao J, Milne JC, Collier RJ (1995) Effect of anthrax toxin’s lethal factor on ion channels formed by the protective antigen. J Biol Chem 270: 18626–18630PubMedGoogle Scholar
  35. 35.
    Mujer CV, Wagner MA, Eschenbrenner M, Horn T, Kraycer JA, Redkar R, Hagius S, Elzer P, Delvecchio VG (2002) Global analysis of Brucella melitensis proteomes. Ann NY Acad Sci 969: 97–101PubMedGoogle Scholar
  36. 36.
    Glynn MK, Lynn TV (2008) Brucellosis. J Am Vet Med Assoc 233: 900–908PubMedGoogle Scholar
  37. 37.
    Franco MP, Mulder M, Gilman RH, Smits HL (2007) Human brucellosis. Lancet Infect Dis 7: 775–786PubMedGoogle Scholar
  38. 38.
    Al-Tawfiq JA (2008) Therapeutic options for human brucellosis. Expert Rev Anti Infect Ther 6: 109–120PubMedGoogle Scholar
  39. 39.
    Pappas G, Papadimitrou P, Christou L, Akritidis N (2006) Future trends in human brucellosis treatment. Exp Opin Investig Drugs 15: 1141–1149Google Scholar
  40. 40.
    Gupta VK, Rout PK, Vihan VS (2007) Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16 M. Res Vet Sci 82: 305–313PubMedGoogle Scholar
  41. 41.
    McCoy GW, Chapin CW (1912) Further observations on a plague like disease of rodents with a plelimiary note on the causative agent. Bacterium tularense. J Infect Dis 10: 61–72Google Scholar
  42. 42.
    Jellison WL (1972) Tularemia: Dr. Edward Francis and his first 23 isolates of Francisella tularensis. Bull Hist Med 46: 477–485PubMedGoogle Scholar
  43. 43.
    Nigeovic LE, Wingerter SL (2008) Tularemia. Infect Dis Clin North Am 22: 489–504Google Scholar
  44. 44.
    Gurycova D (1998) First isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol 14: 797–802PubMedGoogle Scholar
  45. 45.
    Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15: 631–646PubMedGoogle Scholar
  46. 46.
    Morner T (1992) The ecology of tularaemia. Rev Sci Tech 11: 1123–1130PubMedGoogle Scholar
  47. 47.
    Pavlovich NV, Mishakin BN, Tynkevich NK, Ryzhko IV, Romanova LV, Danilevskaia GI (1991) Comparative characteristics of biological properties of Francisella tularensis strains isolated in the USSR. Antibiot Khimioter 35: 23–25Google Scholar
  48. 48.
    Broekhuijsen M, Larsson P, Johansson A, Bystrom M, Eriksson U, Larsson E, Prior RG, Sjostedt A, Titball RW (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensives genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin Microbiol 41: 2924–2931Google Scholar
  49. 49.
    Pikula J, Treml F, Beklova M, Holesovska Z, Pikulova J (2003) Ecological conditions of natural foci of tularemia in the Czech Republic. Eur J Epid 18: 1091–1095Google Scholar
  50. 50.
    Pikula J, Beklova M, Holesovska Z, Treml F (2004) Prediction of possible distribution of tularemia in the Czech Republic. Vet Med-Czech 49: 61–64Google Scholar
  51. 51.
    Pikula J, Beklova M, Holesovska Z, Treml F (2004) Ecology of European brown hare and distribution of natural foci of tularaemia in the Czech Republic. Acta Vet Brno 73: 267–273Google Scholar
  52. 52.
    Hubalek Z, Sixl W, Halouzka J (1998) Francisella tularensis in Dermacentor reticulatus ticks from the Czech Republic and Austria. Wien Klin Wochenschr 110: 909–910PubMedGoogle Scholar
  53. 53.
    Zhang F, Liu W, Chu MC, He J, Duan Q, Wu, X.M., Zhang PH, Zhao QM, Yang H, Xin ZT, Cao WC (2006) Francisella tularensis in rodents, China. Emerg Infect Dis 12: 994–996PubMedGoogle Scholar
  54. 54.
    Siret V, Barataud D, Prat M, Vaillant V, Ansart S, LeCoustumier A, Vaissaire J, Raffi F, Garre M, Capek I (2006) An outbreal of airborne tularemia in France, August 2004. Euro Surveill 11: 58–60PubMedGoogle Scholar
  55. 55.
    Pullen RL, Stuart BM (1945) Tularemia: Analysis of 225 cases. J Am Med Assoc 129: 495–500Google Scholar
  56. 56.
    Dennis DT, Iglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Layton M, Lillibridge SR, McDale JE, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (2001) Tularemia as a biological wapon — Medical and public health magagement. J Am Med Assoc 285: 2763–2773Google Scholar
  57. 57.
    Pohanka M (2007) Evaluation of immunoglobulin production during tularaemia infection in BALB/c mouse model. Acta Vet Brno 76: 579–584Google Scholar
  58. 58.
    Enderlin G, Morales L, Jacobs RF, Cross TJ (1994) Streptomycin and alternative agents for the treatment of tularemia: Review of the literature. Clin Infect Dis 19: 42–47PubMedGoogle Scholar
  59. 59.
    Eremeeva EM, Roux V, Raoult D (1993) Determination of genome size and restriction pattern polymorphism of Rickettsia prowazekii and Rickettsia typhi by pulsed field gel electrophoresis. FEMS Microbiol Lett 112: 105–112PubMedGoogle Scholar
  60. 60.
    Weiss E, Coolbaugh JC, Williams JC (1975) Separation of viable Rickettsia typhi from yolk sac and L cell host components by Renografin density gradient centrifuation. Appl Microbiol 30: 456–463PubMedGoogle Scholar
  61. 61.
    Dasch GA, Samms JR, Weiss E (1978) Biochemical characteristics of typhus group Rickettsiae with special attention to the Rickettsia prowazekii strains isolated from flying squirrels. Infect Immun 19: 676–685PubMedGoogle Scholar
  62. 62.
    Andersson SGE, Zomorodipour A, Winkler HH, Kurland CG (1995) Unusual organization of the rRNA genes in Rickettsia prowazekii. J Bacteriol 177: 4171–4175PubMedGoogle Scholar
  63. 63.
    Raoult D, Ndihokubwayo JB, Tisson-Dupont H, Roux V, Faugere B, Abegbinni R, Birtles RJ (1998) Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352: 353–358PubMedGoogle Scholar
  64. 64.
    Bechah Y, Capo C, Mege JL, Raoult D (2008) Epidemic typhus. Lancet Infect Dis 8: 417–426PubMedGoogle Scholar
  65. 65.
    Lukin EP, Nesvizhskii IV (2003) Rickettsiosis: State of the art at the turn of the 21st century. Vestn Ross Akad Med Nauk 1: 30–35PubMedGoogle Scholar
  66. 66.
    Grygorczuk S, Hermanowska-Szpakowicz T (2002) Yersinia pestis as a dangerous biological weapon. Med Pr 53: 343–348PubMedGoogle Scholar
  67. 67.
    Shyamal B, Ravi Kumar R, Sohan L, Balakrishnan N, Veena M, Shiv L (2008) Present susceptibility status of rat flea Xenophsylla cheopis (Siphonaptera: Pulicidae), vector of plague against organochlorine, organophosphate and synthetic pyrethroids 1. The Nilgiris District, Tamil Nadu India. J Common Dis 40: 41–45Google Scholar
  68. 68.
    Eisen RJ, Wilder AP, Bearden SW, Nontenieri JA, Gage KL (2007) Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol 44: 678–682PubMedGoogle Scholar
  69. 69.
    Eisen RJ, Borchert JN, Holmes JL, Amatre G, van Wyk K, Enscore RE, Babi N, Atiku LA, Wilder AP, Vetter SM, Bearden SW, Montenieri JA, Gage KL (2008) Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am J Trop Med Hyg 78: 949–956PubMedGoogle Scholar
  70. 70.
    Achtman M, Zurth K, Morelli C, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96: 14043–14048PubMedGoogle Scholar
  71. 71.
    Guiyoule A, Grimont F, Iteman I, Grimont PAD, Lefevre M, Carniel E (1994) Plague pandemics investigated by ribotyping of Yersinia pestis strains. J Clin Microbiol 32: 634–641PubMedGoogle Scholar
  72. 72.
    Russell JC (1968) That earlier plague. Demography 5: 174–184Google Scholar
  73. 73.
    Ligon BL (2006) Plague: A review of its history and potential as a biological weapon. Semin Pediatr Infect Dis 17: 161–170PubMedGoogle Scholar
  74. 74.
    Reyn CF, Weber NS, Tempest B, Barnes AM, Poland JD, Boyce JM, Zalma V (1977) Epidemiologic and clinical features of an outbreak of bubonic plague in New Mexico. J Infect Dis 136: 489–494Google Scholar
  75. 75.
    Craven RB, Maupin GO, Beard ML, Quan TJ, Barnes AM (1993) Reported cases of human plague infections in the United States, 1970–1991. J Med Entomol 30: 758–761PubMedGoogle Scholar
  76. 76.
    Crook LD, Tempest B (1992) Plague: A clinical review of 27 cases. Arch Intern Med 152: 1253–1256PubMedGoogle Scholar
  77. 77.
    Slifka MK, Hanifin JM (2004) Smallpox: The basics. Dermatol Clin 22: 263–274PubMedGoogle Scholar
  78. 78.
    Riedel S (2005) Small pox and biological warfare: A disease revisited. BUMC Proc 18: 13–20Google Scholar
  79. 79.
    Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID (1988) Small pox and its eradication. World Health Organization Memorandum 1460Google Scholar
  80. 80.
    World Health Organization (1975) Weekly Epidemiol Rec 38: 325–329Google Scholar
  81. 81.
    Nafziger SD (2005) Smallpox. Crit Care Clin 21: 739–746PubMedGoogle Scholar
  82. 82.
    Koplan J, Monsur KA, Foster SO (1975) Treatment of variola major with adenine arabinoside. J Infect Dis 131: 34–39PubMedGoogle Scholar
  83. 83.
    Monsur KA, Hossain MS, Huq F, Rahaman MM, Haque MQ (1975) Treatment of variola major with cytosine arabinoside. J Infect Dis 131: 40–43PubMedGoogle Scholar
  84. 84.
    Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, Ksiazek T, Johnson KM, Meyerhoff A, O’Toole T, Ascher MS, Barlett J, Breman JG, Eitzen EM, Hamburg M, Hauer J, Henderson DA, Johnson RT, Kwik G, Layton M, Lillibridge S, Nabel GJ, Osterholm MT, Perl TM, Russell P, Tonat K (2002) Hemorrhagic fever viruses as biological weapon. J Am Med Assoc 18: 2391–2405Google Scholar
  85. 85.
    LeDuc JW (1989) Epidemiology of hemorrhagic fever viruses. Rev Infect Dis 11: 730–735Google Scholar
  86. 86.
    Schou S, Hansen AK (2000) Marburg and Ebola virus infection in laboratory nonhuman primates: A literature review. Comp Med 50: 108–123PubMedGoogle Scholar
  87. 87.
    Groseth A, Feldmann H, Strong JE (2007) The ecology of Ebola virus. Trends Microbiol 15: 408–416PubMedGoogle Scholar
  88. 88.
    Peters CJ, Kuehne RW, Mercado RR, LeBow RH, Spertzel RO, Webb PA (1974) Hemorrhagic fever in Cochabamba, Bolivia, 1971. Am J Epidemiol 99: 425–433PubMedGoogle Scholar
  89. 89.
    Slenczka WK (1999) The Marburg virus outbreak of 1967 and subsequent episodes. Curr Top Microbiol Immunol 235: 49–75PubMedGoogle Scholar
  90. 90.
    Huggins JW (1989) Prospect for treatment of viral hemorrhagic fevers with ribavirin, a broadspectrum antiviral drug. Rev Infect Dis 11: 750–761Google Scholar
  91. 91.
    Maes P, Clement J, van Ranst M (2009) Recent approaches in hantavirus vaccine development. Expert Rev Vaccines 8: 67–76PubMedGoogle Scholar
  92. 92.
    Hall JD, McCroskey LM, Pincomb BJ, Hetheway CL (1985) Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxon from an infant with botulism. J Clin Microbiol 21: 654–655PubMedGoogle Scholar
  93. 93.
    Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154: 207–211PubMedGoogle Scholar
  94. 94.
    Gill MD (1982) Bacterial toxins: A table of lethal amounts. Microbiol Rev 46: 86–94PubMedGoogle Scholar
  95. 95.
    Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5: 898–902PubMedGoogle Scholar
  96. 96.
    Bach-Rojecky L, Relja M, Filipovic B, Lackovic Z (2007) Botulinum toxin type A and cholinergic system. Lijec Vjesn 129: 407–414PubMedGoogle Scholar
  97. 97.
    Fernandez PS, Peck MW (1999) A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Appl Environ Microbiol 65: 3449–3457PubMedGoogle Scholar
  98. 98.
    Koenig MG, Drutz DJ, Mushlin AI, Schaffner W, Rogers DE (1967) Type B botulism in man. Am J Med 42: 208–219PubMedGoogle Scholar
  99. 99.
    Hughes JM, Blumenthal JR, Meson MH, Lombard GL, Dowell VR, Gangarosa EJ (1981) Clinical features of types A and B food-borne botulism. Ann Intern Med 95: 442–445PubMedGoogle Scholar
  100. 100.
    Tacket CO, Shandera WX, Mann JM, Hargrett NT, Blake PA (1984) Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med 76: 794–798PubMedGoogle Scholar
  101. 101.
    Siegel LS (1988) Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay. J Clin Microbiol 26: 2351–2356PubMedGoogle Scholar
  102. 102.
    Zhan J, Zhou P (2003) A simplified method to evaluate the acute toxicity of ricin and ricinus agglutinin. Toxicology 186: 119–123PubMedGoogle Scholar
  103. 103.
    Ippoliti R (2004) Structure and function of the plant toxin ricin, an N-glycosidase enzyme. Ital J Biochem 53: 92–97PubMedGoogle Scholar
  104. 104.
    Lord MJ, Jolliffe NA, Marsden CJ, Pateman CS, Smith DC, Spooner RA, Watson PD, Roberts LM (2003) Ricin. Mechanisms of cytotoxicity. Toxicol Rev 22: 53–64PubMedGoogle Scholar
  105. 105.
    Gonzalez TV, Farrant SA, Mantis NJ (2006) Ricin induces IL-8 secretion from human monocyte/macrophages by activating the p38 MAP kinase pathway. Mol Immunol 43: 1920–1923PubMedGoogle Scholar
  106. 106.
    Rao PV, Jayaraj R, Bhaskar AS, Kumar O, Bhatacharya R, Saxena P, Dash PK, Vijayaraghavan R (2005) Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem Pharmacol 69: 855–865PubMedGoogle Scholar
  107. 107.
    Sun J, Pohl EE, Krylova OO, Krause E, Agapov II, Tonevitsky AG, Pohl P (2004) Membrane destabilization by ricin. Eur Biophys J 33: 572–579PubMedGoogle Scholar
  108. 108.
    Canter DA, Gunning D, Rodgers P, O’Connor L, Traunero C, Kempter CJ (2005) Remediation of Bacillus anthracis contamination in the U.S. Department of Justice mail facility. Biosecur Bioterror 3: 119–127PubMedGoogle Scholar
  109. 109.
    Josefson D (2001) US fear of bioterrorism spreads as anthrax cases incease. Br Med J 323: 877–878Google Scholar
  110. 110.
    Higgins JA, Cooper M, Schroeder-Trucker L, Black S, Miller D, Karns JS, Manthey E, Breeze R, Perdue ML (2002) A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001. Appl Environ Microbiol 69: 593–599Google Scholar
  111. 111.
    Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296: 2028–2033Google Scholar
  112. 112.
    Duncan EJ, Kournikakis B, Ho J, Hill I (2009) Pulmonary depostion of aerosolized Bacillus atrophaeus in a Swine model due to exposure from a simulated anthrax letter incident. Inhal Toxicol 21: 141–152PubMedGoogle Scholar
  113. 113.
    Duncan S, Ho J (2008) Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range. Clean Soil Air Water 36: 584–592Google Scholar
  114. 114.
    Gerndt H (2002) Anthrax stories — Theses on legend research in the globalized world. Österr Z Volkskd 105: 279–295Google Scholar
  115. 115.
    Benedek DM, Hollway HC, Becker SM (2002) Emergency mental health management in bioterrorism events. Emerg Med Clin North Am 20: 393–407PubMedGoogle Scholar
  116. 116.
    Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, Baze WB, Suarez G, Peterson JW, Chopra AK (2008) Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology 154: 1939–1948PubMedGoogle Scholar
  117. 117.
    Chen PS, Li CS (2007) Real-time monitoring for bioaerosols — Flow cytometry. Analyst 132: 14–16PubMedGoogle Scholar
  118. 118.
    Ward M, Siegel JA, Corsi RL (2005) The effectiveness of stand alone air cleaners for shelter-inplace. Indoor Air 15: 127–134PubMedGoogle Scholar
  119. 119.
    Eubanks LM, Dickerson TJ, Janda KD (2007) Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem Soc Rev 36: 458–470PubMedGoogle Scholar
  120. 120.
    Pohanka M, Hubalek M, Neubauerova V, Macela A, Faldyna M, Bandouchova H, Pikula J (2008) Current and emerging assays for Francisella tularensis detection: A review. Vet Med Czech 53: 585–594Google Scholar
  121. 121.
    Saikaly PE, Berlaz MA, de Los Reyes FL (2007) Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and lechate. Appl Environ Microbiol 73: 6557–6565PubMedGoogle Scholar
  122. 122.
    Edwards KA, Clancy HA, Baeumner AJ (2006) Bacillus anthracis: Toxicology, epidemiology and current rapid-detection methods. Anal Bioanal Chem 384: 73–84PubMedGoogle Scholar
  123. 123.
    Pohanka M, Skladal P, Kroca M (2007) Biosensors for biological warfare agent detection. Def Sci J 57: 185–193Google Scholar
  124. 124.
    Pohanka M, Skladal P (2005) Piezoelectric immunosensor for Francisella tularensis detection using immunoglobulin M in a limiting dilution. Anal Lett 76: 607–612Google Scholar
  125. 125.
    Pohanka M, Skladal P (2007) Piezoelectric immunosensor for the direct and rapid detection of Franciella tularensis. Folia Microbiol 52: 325–330Google Scholar
  126. 126.
    Pohanka M, Pavlis O, Skladal P (2007) Diagnosis of tularemia using piezoelectric biosensor technology. Talanta 71: 981–985PubMedGoogle Scholar
  127. 127.
    Pohanka M, Treml F, Hubalek M, Bandouchova H, Beklova M, Pikula J (2007) Piezoelectric biosensor biosensor for a simple serological diagnosis of tularemia in infected European brown hares (Lepus europaeus). Sensors 7: 2825–2834Google Scholar
  128. 128.
    Pohanka M, Skladal P (2007) Serological diagnosis of tularemia in mice using the amperometric immunosensor. Electroanalysis 19: 2507–2512Google Scholar
  129. 129.
    Wayne Conlan J, Oyston PC (2007) Vaccines against Francisella tularensis. Ann NY Acad Sci 1105: 325–350PubMedGoogle Scholar
  130. 130.
    Drusano GL, Okusanva OO, Okusanva A, van Scov B, Brown DL, Kulawy R, Sorgel F, Heine HS, Louie A (2005) Is 60 days of ciprofloxacin administration necessary for postexposure prophylaxis for Bacillus anthracis? Antimicrob Agents Chemother 52: 3973–3979Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2010

Authors and Affiliations

  • Miroslav Pohanka
    • 1
  • Kamil Kuča
    • 1
  1. 1.Center of Advanced Studies and Department of Toxicology, Faculty of Military Health SciencesUniversity of DefenceHradec KraloveCzech Republic

Personalised recommendations