Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 100))

Abstract

Bacterial toxins damage the host at the site of bacterial infection or distant from the site. Bacterial toxins can be single proteins or oligomeric protein complexes that are organized with distinct AB structure-function properties. The A domain encodes a catalytic activity. ADP ribosylation of host proteins is the earliest post-translational modification determined to be performed by bacterial toxins; other modifications include glucosylation and proteolysis. Bacterial toxins also catalyze the non-covalent modification of host protein function or can modify host cell properties through direct protein-protein interactions. The B domain includes two functional domains: a receptor-binding domain, which defines the tropism of a toxin for a cell and a translocation domain that delivers the A domain across a lipid bilayer, either on the plasma membrane or the endosome. Bacterial toxins are often characterized based upon the secretion mechanism that delivers the toxin out of the bacterium, termed types I–VII. This review summarizes the major families of bacterial toxins and also describes the specific structure-function properties of the botulinum neurotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field M, Graf LH Jr, Laird WJ, Smith PL (1978) Heat-stable enterotoxin of Escherichia coli: In vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75: 2800–2804

    Article  CAS  PubMed  Google Scholar 

  2. Giannella RA (1981) Pathogenesis of acute bacterial diarrheal disorders. Annu Rev Med 32: 341–357

    Article  CAS  PubMed  Google Scholar 

  3. Crane JK, Wehner MS, Bolen EJ, Sando JJ, Linden J, Guerrant RL, Sears CL (1992) Regulation of intestinal guanylate cyclase by the heat-stable enterotoxin of Escherichia coli (STa) and protein kinase C. Infect Immun 60: 5004–5012

    CAS  PubMed  Google Scholar 

  4. Takao T, Hitouji T, Aimoto S, Shimonishi Y, Hara S, Takeda T, Takeda Y, Miwatani T (1983) Amino acid sequence of a heat-stable enterotoxin isolated from enterotoxigentic Escherichia coli strain 18D. FEBS Lett 152: 1–5

    Article  CAS  PubMed  Google Scholar 

  5. Ozaki H, Sato T, Kubota H, Hata Y, Katsube Y, Shimonishi Y (1991) Molecular structure of the toxic domain of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli. J Biol Chem 266: 5934–5941

    CAS  PubMed  Google Scholar 

  6. Hidaka Y, Kubota H, Yoshimura S, Ito H, Takeda Y, Shimonishi Y (1988) Disulfide linkages in heat-stable enterotoxin (STp) produced by a porcine strain of enterotoxigenic Escherichia coli. Bull Chem Soc Jpn 61: 1265–1271

    Article  CAS  Google Scholar 

  7. Waldman SA, O’Hanley P (1989) Influence of a glycine or proline substitution on the functional properties of a 14-amino acid analog of Escherichia coli heat-stable enterotoxin. Infect Immun 57: 2420–2424

    CAS  PubMed  Google Scholar 

  8. Yamasaki S, Sato T, Hidaka Y, Ozaki H, Ito H, Hirayama T, Takeda Y, Sugimura T, Tai A, Shimonishi Y (1990) Structure-activity relationship of Escherichia coli heat-stable enterotoxin: Role of Ala residue at position 14 in toxin-receptor interaction. Bull Chem Soc Jpn 63: 2063–2070

    Article  CAS  Google Scholar 

  9. Hasegawa M, Shimonishi Y (2005) Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C. J Peptide Res 65: 261–271

    Article  CAS  Google Scholar 

  10. Yoshimura S, Ikemura H, Watanabe H, Aimoto S, Shimonishi Y, Hara S, Takeda T, Miwatani T, Takeda Y (1985) Essential structure for full enterotoxigenic activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli. FEBS Lett 181: 138–142

    Article  CAS  PubMed  Google Scholar 

  11. Ikemura H, Takagi H, Inouye M (1987) Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem 262: 7859–7864

    CAS  PubMed  Google Scholar 

  12. Gupta DD, Saha S, Chakrabarti MK (2005) Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205. Toxicol Appl Pharmol 206: 9–16

    Article  CAS  Google Scholar 

  13. Goldstein JL, Sahi J, Bhuva M, Layden TJ, Rao MC (1994) Escherichia coli heat-stable enterotoxin-mediated colonic Cl-secretion is absent in cystic fibrosis. Gastroenterology 107: 950–956

    CAS  PubMed  Google Scholar 

  14. Goncalves C, Vachon V, Schwartz JL, Dubreuil JD (2007) The Escherichia coli enterotoxin STb permeabilizes piglet jejunal brush border membrane vesicles. Infect Immun 75: 2208–2213

    Article  CAS  PubMed  Google Scholar 

  15. Handl CE, Flock JI (1992) STb producing Escherichia coli are rarely associated with infantile diarrhea. J Diarrhoeal Dis Res 10: 37–38

    CAS  PubMed  Google Scholar 

  16. Arriaga YL, Harville BA, Dreyfus LA (1995) Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun 63: 4715–4720

    CAS  PubMed  Google Scholar 

  17. Labrie V, Harel J, Dubreuil JD (2001) Oligomerization of Escherichia coli enterotoxin b through its C-terminal hydrophobic α-helix Biochim Biophys Acta 1535: 128–133

    CAS  PubMed  Google Scholar 

  18. Okamoto K, Baba T, Yamanaka H, Akashi N, Fujii Y (1995) Disulfide bond formation and secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 177: 4579–4586

    CAS  PubMed  Google Scholar 

  19. Rousset E, Harel J, Dubreuil JD (1998) Sulfatide from the pig jejunum brush border epithelial cell surface is involved in binding of Escherichia coli enterotoxin b. Infect Immun 66: 5650–5658

    CAS  PubMed  Google Scholar 

  20. Kennedy DJ, Greenberg RN, Dunn JA, Abernathy R, Ryerse JS, Guerrant RL (1984) Effects of Escherichia coli heat-stable enterotoxin STb on intestines of mice, rats, rabbits, and piglets. Infect Immun 46: 639–643

    CAS  PubMed  Google Scholar 

  21. Dreyfus LA, Harville B, Howard DE, Shaban R, Beatty DM, Morris SJ (1993) Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STb). Proc Natl Acad Sci USA 90: 3202–3206

    Article  CAS  PubMed  Google Scholar 

  22. Erume J, Berberov EM, Kachman SD, Scott MA, Zhou Y, Francis DH, Moxley RA (2008) Comparison of the contributions of heat-labile enterotoxin and heat-stable enterotoxin b to the virulence of enterotoxigenic Escherichia coli in F4ac receptor-positive young pigs. Infect Immun 76: 3141–3149

    Article  CAS  PubMed  Google Scholar 

  23. Lucas ML, Duncan NW, O’Reilly NF, McIlvenny TJ, Nelson YB (2008) Lack of evidence in vivo for a remote effect of Escherichia coli heat stable enterotoxin on jejunal fluid absorption. Neurogastroenterol Motil 20: 532–538

    Article  CAS  PubMed  Google Scholar 

  24. Gouaux E (1997) Channel-forming toxins: Tales of transformation. Curr Opin Struct Biol 7: 566–573

    Article  CAS  PubMed  Google Scholar 

  25. Lesieur C, Vecsey-Semien B, Abrami L, Fivaz M, van der Goot FG (1997) Membrane insertion: The strategy of toxins. Mol Membr Biol 14: 45–64

    Article  CAS  PubMed  Google Scholar 

  26. Kurisu G, Zakharov SD, Zhalnina MV, Bano S, Eroukova VY, Rokitskaya TI, Antonenko YN, Wiener MC, Cramer WA (2003) The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nat Struct Biol 10: 948–954

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, Cramer WA (2008) Crystal structures of the OmpF porin: Function in a colicin translocon. EMBO J 27: 2171–2180

    Article  CAS  PubMed  Google Scholar 

  28. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357: 216–222

    Article  CAS  PubMed  Google Scholar 

  29. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, van der Spek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160: 1139–1150

    Article  CAS  PubMed  Google Scholar 

  30. Tilley SJ, Saibil HR (2006) The mechanism of pore formation by bacterial toxins. Curr Opin Struct Biol 16: 230–236

    Article  CAS  PubMed  Google Scholar 

  31. Iacovache I, Paumard P, Scheib H, Lesieur C, Sakai N, Matile S, Parker MW, van der Goot FG (2006) A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J 25: 457–466

    Article  CAS  PubMed  Google Scholar 

  32. Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin: An extended β-barrel. Biochemistry 41: 1445–1450

    Article  CAS  PubMed  Google Scholar 

  33. Moniatte M, van der Goot FG, Buckley JT, Pattus F, van Dorsselaer A (1996) Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Lett 384: 269–272

    Article  CAS  PubMed  Google Scholar 

  34. Parker MW, Feil SC (2005) Pore-forming protein toxins: From structure to function. Prog Biophys Mol Biol 88: 91–142

    Article  CAS  PubMed  Google Scholar 

  35. Sekiya K, Satoh R, Danbara H, Futaesaku Y (1993) A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol 175: 5953–5961

    CAS  PubMed  Google Scholar 

  36. Park JM, Ng VH, Maeda S, Rest RF, Karin M (2004) Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200: 1647–1655

    Article  CAS  PubMed  Google Scholar 

  37. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10: 1765–1774

    Article  CAS  PubMed  Google Scholar 

  38. Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW (2007) Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 367: 1227–1236

    Article  CAS  PubMed  Google Scholar 

  39. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73: 6199–6209

    Article  CAS  PubMed  Google Scholar 

  40. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73: 6199–6209

    Article  CAS  PubMed  Google Scholar 

  41. Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci USA 102: 7139–7144

    Article  CAS  PubMed  Google Scholar 

  42. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, Voskobolnlk I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10: 1765–1774

    Article  CAS  PubMed  Google Scholar 

  43. Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121: 247–256

    Article  CAS  PubMed  Google Scholar 

  44. Yoshino K, Abe J, Murata H, Takao T, Kohsaka T, Shimonishi Y, Takeda T (1994) Purification and characterization of a novel superantigen produced by a clinical isolate of Yersinia pseudotuberculosis. FEBS Lett 356: 141–144

    Article  CAS  PubMed  Google Scholar 

  45. McCormick JK, Yarwood JM, Schlievert PM (2001) Toxic shock syndrome and bacterial superantigens: An update. Annu Rev Microbiol 55: 77–104

    Article  CAS  PubMed  Google Scholar 

  46. Bergdoll MS (1983) Enterotoxins. In: CSF Easmon, C Adlam (eds): Staphylococci and Staphylococcal Infections. Academic Press, London, 559–598

    Google Scholar 

  47. Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225: 226–243

    Article  CAS  PubMed  Google Scholar 

  48. Donadini R, Liew CW, Kwan AH, Mackay JP, Fields BA (2004) Crystal and solution structures of a superantigen from Yersinia pseudotuberculosis reveal a jelly-roll fold. Structure 12: 145–156

    Article  CAS  PubMed  Google Scholar 

  49. Al-Shangiti AM, Naylor CE, Nair SP, Briggs DC, Henderson B, Chain BM (2004) Structural relationships and cellular tropism of staphylococcal superantigen-like proteins. Infect Immun 72: 4261–4270

    Article  CAS  PubMed  Google Scholar 

  50. Arcus VL, Langley R, Proft T, Fraser JD, Baker EN (2002) The three-dimensional structure of a superantigen-like protein, SET3, from a pathogenicity island of the Staphylococcus aureus genome. J Biol Chem 277: 32274–32281

    Article  CAS  PubMed  Google Scholar 

  51. Chung MC, Wines BD, Baker H, Langley RJ, Baker EN, Fraser JD (2007) The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol Microbiol 66: 1342–1355

    Article  CAS  PubMed  Google Scholar 

  52. Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD (2005) The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc α RI binding and serum killing of bacteria. J Immunol 174: 2926–2933

    CAS  PubMed  Google Scholar 

  53. Kim J, Urban RG, Strominger JL, Wiley DC (1994) Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule. Science 266: 1870–1874

    Article  CAS  PubMed  Google Scholar 

  54. Gunther S, Varma AK, Moza B, Kasper KJ, Wyatt AW, Zhu P, Rahman AK, Li Y, Mariuzza RA, McCormick JK, Sundberg EJ (2007) A novel loop domain in superantigens extends their T cell receptor recognition site. J Mol Biol 371: 210–221

    Article  PubMed  CAS  Google Scholar 

  55. Li Y, Li H, Dimasi N, McCormick JK, Martin R, Schuck P, Schlievert PM, Mariuzza RA (2001) Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 14: 93–104

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Li Z, Drozd SJ, Guo Y, Mourad W, Li H (2004) Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Structure 12: 277–288

    CAS  PubMed  Google Scholar 

  57. Sundberg EJ, Deng L, Mariuzza RA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19: 262–271

    Article  CAS  PubMed  Google Scholar 

  58. Pless DD, Ruthel G, Reinke EK, Ulrich RG, Bavari S (2005) Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators. Infect Immun 73: 5358–5366

    Article  CAS  PubMed  Google Scholar 

  59. Sundberg EJ, Li H, Llera AS, McCormick JK, Tormo J, Schlievert PM, Karjalainen K, Mariuzza RA (2002) Structures of two streptococcal superantigens bound to TCR β chains reveal diversity in the architecture of T cell signaling complexes. Structure 10: 687–699

    Article  CAS  PubMed  Google Scholar 

  60. Sundberg EJ, Deng L, Mariuzza RA (2007) TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 19: 262–271

    Article  CAS  PubMed  Google Scholar 

  61. Yang X, Buonpane RA, Moza B, Rahman AK, Wang N, Schlievert PM, McCormick JK, Sundberg EJ, Kranz DM (2008) Neutralization of multiple staphylococcal superantigens by a single-chain protein consisting of affinity-matured, variable domain repeats. J Infect Dis 198: 344–348

    Article  CAS  PubMed  Google Scholar 

  62. Thomas D, Dauwalder O, Brun V, Badiou C, Ferry T, Etienne J, Vandenesch F, Lina G (2009) Staphylococcus aureus superantigens elicit redundant and extensive human Vβ patterns. Infect Immun 77: 2043–2050

    Article  CAS  PubMed  Google Scholar 

  63. Ostolaza H, Soloaga A, Goni FM (1995) The binding of divalent cations to Escherichia coli α-haemolysin. Eur J Biochem 228: 39–44

    CAS  PubMed  Google Scholar 

  64. Wolff N, Ghigo JM, Delepelaire P, Wandersman C, Delepierre M (1994) C-terminal secretion signal of an Erwinia chrysanthemi protease secreted by a signal peptide-independent pathway: Proton NMR and CD conformational studies in membrane-mimetic environments. Biochemistry 33: 6792–6801

    Article  CAS  PubMed  Google Scholar 

  65. Allenby NE, O’Connor N, Pragai Z, Carter NM, Miethke M, Engelmann S, Hecker M, Wipat A, Ward AC, Harwood CR (2004) Post-transcriptional regulation of the Bacillus subtilis pst operon encoding a phosphate-specific ABC transporter. Microbiology 150: 2619–2628

    Article  CAS  PubMed  Google Scholar 

  66. Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694: 149–161

    Article  CAS  PubMed  Google Scholar 

  67. Letoffe S, Delepelaire P, Wandersman C (1996) Protein secretion in gram-negative bacteria: Assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J 15: 5804–5811

    CAS  PubMed  Google Scholar 

  68. Glaser P, Danchin A, Ladant D, Barzu O, Ullmann A (1988) Bordetella pertussis adenylate cyclase: The gene and the protein. Tokai J Exp Clin Med 13 Suppl: 239–252

    PubMed  Google Scholar 

  69. Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the α(M)β(2) integrin (CD11b/CD18). J Exp Med 193: 1035–1044

    Article  CAS  PubMed  Google Scholar 

  70. Weingart CL, Mobberley-Schuman, PS, Hewlett, EL, Gray, MC, Weiss AA (2000) Neutralizing antibodies to andenylate cyclase toxin promote phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 68: 7152–7155

    Article  CAS  PubMed  Google Scholar 

  71. Rogel A, Hanski E (1992) Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem 267: 22599–22605

    CAS  PubMed  Google Scholar 

  72. Cheung GY, Kelly SM, Jess TJ, Prior S, Price NC, Parton R, Coote JG (2009) Functional and structural studies on different forms of the adenylate cyclase toxin of Bordetella pertussis. Microb Pathog 46: 36–42

    Article  CAS  PubMed  Google Scholar 

  73. Arnoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M (2005) Cutting edge: Macrophage inhibition by cyclic AMP (cAMP): Differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol 174: 595–599

    Google Scholar 

  74. Galgani M, De Rosa V, De Simone S, Leonardi A, D’Oro U, Napolitani G, Masci AM, Zappacosta S, Racioppi L (2004) Cyclic AMP modulates the functional plasticity of immature dendritic cells by inhibiting Src-like kinases through protein kinase A-mediated signaling. J Biol Chem 279: 32507–32514

    Article  CAS  PubMed  Google Scholar 

  75. Ehrmann IE, Gray MC, Gordon VM, Gray LS, Hewlett EL (1991) Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett 278: 79–83

    Article  CAS  PubMed  Google Scholar 

  76. Chenal A, Guijarro JI, Raynal B, Delepierre M, Ladant D (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium: Implication for protein secretion. J Biol Chem 284: 1781–1789

    Article  CAS  PubMed  Google Scholar 

  77. Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, Benada O, Just I, Sebo P (2008) Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J Immunol 181: 5587–5597

    CAS  PubMed  Google Scholar 

  78. Watanabe M, Blobel G (1989) SecB functions as a cytosolic signal recognition factor for protein export in E. coli. Cell 58: 695–705

    Article  CAS  PubMed  Google Scholar 

  79. Johnson TL, Abendroth J, Hol WG, Sandkvist M (2006) Type II secretion: From structure to function. FEMS Microbiol Lett 255: 175–186

    Article  CAS  PubMed  Google Scholar 

  80. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: The autotransporter story. Microbiol Mol Biol Rev 68: 692–744

    Article  CAS  PubMed  Google Scholar 

  81. Martoglio B, Dobberstein B (1998) Signal sequences: More than just greasy peptides. Trends Cell Biol 8: 410–415

    Article  CAS  PubMed  Google Scholar 

  82. Yanez ME, Korotkov KV, Abendroth J, Hol WG (2008) Structure of the minor pseudopilin EpsH from the Type 2 secretion system of Vibrio cholerae. J Mol Biol 377: 91–103

    Article  CAS  PubMed  Google Scholar 

  83. Bachert C, Zhang N, Patou J, van Zele T, Gevaert P (2008) Role of staphylococcal superantigens in upper airway disease. Curr Opin Allergy Clin Immunol 8: 34–38

    Article  CAS  PubMed  Google Scholar 

  84. Van Heyningen S (1974) Cholera toxin: Interaction of subunits with ganglioside GMI. Science 183: 656–657

    Article  Google Scholar 

  85. Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI (2007) Rafting with cholera toxin: Endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 266: 129–137

    Article  CAS  PubMed  Google Scholar 

  86. Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3: 1222–1227

    Article  CAS  PubMed  Google Scholar 

  87. Moss J, Manganiello VC, Vaughan M (1976) Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: Possible role in the activation of adenylate cyclase. Proc Natl Acad Sci USA 73: 4424–4427

    Article  CAS  PubMed  Google Scholar 

  88. Gill DM (1975) Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro. Proc Natl Acad Sci USA 72: 2064–2068

    Article  CAS  PubMed  Google Scholar 

  89. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036

    Article  CAS  PubMed  Google Scholar 

  90. Halm DR, Rechkemmer GR, Schoumacher RA, Frizzell RA (1988) Apical membrane chloride channels in a colonic cell line activated by secretory agonists. Am J Physiol 254: C505–511

    CAS  PubMed  Google Scholar 

  91. Nystrom-Asklin J, Adamsson J, Harandi AM (2008) The adjuvant effect of CpG oligodeoxynucleotide linked to the non-toxic B subunit of cholera toxin for induction of immunity against H. pylori in mice. Scand J Immunol 67: 431–440

    Article  CAS  PubMed  Google Scholar 

  92. Plano GV, Day JB, Ferracci F (2001) Type III export: New uses for an old pathway. Mol Microbiol 40: 284–293

    Article  CAS  PubMed  Google Scholar 

  93. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM (2004) Structural insights into the assembly of the type III secretion needle complex. Science 306: 1040–1042

    Article  CAS  PubMed  Google Scholar 

  94. Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, Blocker A (2005) The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 280: 42929–42937

    Article  CAS  PubMed  Google Scholar 

  95. Veenendaal AK, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ (2007) The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63: 1719–1730

    Article  CAS  PubMed  Google Scholar 

  96. Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT, Blocker A, Picking WD (2005) IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect Immun 73: 1432–1440

    Article  CAS  PubMed  Google Scholar 

  97. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274: 36369–36372

    Article  CAS  PubMed  Google Scholar 

  98. Krall R, Sun J, Pederson KJ, Barbieri JT (2002) In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 70: 360–367

    Article  CAS  PubMed  Google Scholar 

  99. Wurtele M, Wolf E, Pederson KJ, Buchwald G, Ahmadian MR, Barbieri JT, Wittinghofer A (2001) How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat Struct Biol 8: 23–26

    Article  CAS  PubMed  Google Scholar 

  100. Ganesan AK, Vincent TS, Olson JC, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J Biol Chem 274: 21823–21829

    Article  CAS  PubMed  Google Scholar 

  101. Deng Q, Barbieri JT (2008) Modulation of host cell endocytosis by the type III cytotoxin, Pseudomonas ExoS. Traffic 9: 1948–1957

    Article  CAS  PubMed  Google Scholar 

  102. Maresso AW, Deng Q, Pereckas MS, Wakim BT, Barbieri JT (2007) Pseudomonas aeruginosa ExoS ADP-ribosyltransferase inhibits ERM phosphorylation. Cell Microbiol 9: 97–105

    Article  CAS  PubMed  Google Scholar 

  103. Fu H, Coburn J, Collier RJ (1993) The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci USA 90: 2320–2324

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Y, Barbieri JT (2005) A leucine-rich motif targets Pseudomonas aeruginosa ExoS within mammalian cells. Infect Immun 73: 7938–7945

    Article  CAS  PubMed  Google Scholar 

  105. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183: 1767–1774

    Article  CAS  PubMed  Google Scholar 

  106. Corech R, Rao A, Laxova A, Moss J, Rock MJ, Li Z, Kosorok MR, Splaingard ML, Farrell PM, Barbieri JT (2005) Early immune response to the components of the type III system of Pseudomonas aeruginosa in children with cystic fibrosis. J Clin Microbiol 43: 3956–3962

    Article  CAS  PubMed  Google Scholar 

  107. Burns DL (2003) Type IV transporters of pathogenic bacteria. Curr Opin Microbiol 6: 29–34

    Article  CAS  PubMed  Google Scholar 

  108. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451–485

    Article  CAS  PubMed  Google Scholar 

  109. Saier MH (2006) Protein secretion and membrane insertion systems in Gram-negative bacteria. J Membr Biol 214: 75–90

    Article  CAS  PubMed  Google Scholar 

  110. Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genese for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98: 2503–2508

    Article  CAS  PubMed  Google Scholar 

  111. Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G (2003) VirB11 ATPases are dynamic hexameric assemblies: New insights into bacterial type IV secretion. EMBO J 22: 1969–1980

    Article  CAS  PubMed  Google Scholar 

  112. Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G (2009) Structure of a type IV secretion system core complex. Science 323: 266–268

    Article  CAS  PubMed  Google Scholar 

  113. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9: 207–217

    Article  CAS  PubMed  Google Scholar 

  114. De Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4: e1000117

    Article  PubMed  CAS  Google Scholar 

  115. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10: 2416–2433

    Article  CAS  PubMed  Google Scholar 

  116. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: The autotransporter story. Microbiol Mol Biol Rev 68: 692–744

    Article  CAS  PubMed  Google Scholar 

  117. Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: Structure and function of the autotransporter proteins. Trends Microbiol 6: 370–378

    Article  CAS  PubMed  Google Scholar 

  118. Loveless BJ, Saier MH (1997) A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol 14: 801–807

    Article  Google Scholar 

  119. Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH, Saier MH (2002) Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta 1562: 6–31

    Article  CAS  PubMed  Google Scholar 

  120. Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC (2003) A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 47: 1367–1383

    Article  CAS  PubMed  Google Scholar 

  121. Brunder W, Schmidt H, Karch H (1997) EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24: 767–778

    Article  CAS  PubMed  Google Scholar 

  122. Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 88: 345–349

    Article  CAS  PubMed  Google Scholar 

  123. St Geme JW, Cutter D (2000) The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J. Bacteriol 182: 6005–6013

    Article  CAS  PubMed  Google Scholar 

  124. Henderson IR, Cappello R, Nataro JP (2000) Autotransporter proteins evolution and redefining protein secretion. Trends Microbiol 8: 529–532

    Article  CAS  PubMed  Google Scholar 

  125. Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in Gram-negative bacteria: A thrifty, specific pathway for large virulence proteins. Mol Microbiol 40: 306–313

    Article  CAS  PubMed  Google Scholar 

  126. Grass S, St Geme JW (2000) Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: Roles of the N-terminal and C-terminal domains. Mol Microbiol 36: 55–67

    Article  CAS  PubMed  Google Scholar 

  127. Guedin S, Willery E, Tommassen J, Fort E, Drobecq H, Locht C, Jacob-Dubuisson F (2000) Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 275: 30202–30210

    Article  CAS  PubMed  Google Scholar 

  128. Jacob-Dubuisson F, Buisine C, Willery E, Renauld-Mongenie G, Locht C (1997) Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries. J Bacteriol 179: 775–783

    CAS  PubMed  Google Scholar 

  129. Klauser T, Pohlner J, Meyer TF (1993) The secretion pathway of IgA protease-type proteins in gram-negative bacteria. Bioessays 15: 799–805

    Article  CAS  PubMed  Google Scholar 

  130. Frangione B, Franklin EC (1972) Chemical typing of the immunoglobulins IgM, IgA1 and IgA2. FEBS Lett 20: 321–323

    Article  CAS  PubMed  Google Scholar 

  131. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528–1533

    Article  CAS  PubMed  Google Scholar 

  132. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526–1530

    Article  CAS  PubMed  Google Scholar 

  133. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W (2007) Type VII secretion-Mycobacteria show the way. Nat Rev Microbiol 5: 883–891

    Article  CAS  PubMed  Google Scholar 

  134. Schiavo G, Rossetto O, Santucci A, DasGupta BR, Montecucco C (1992) Botulinum neurotoxins are zink proteins. J Biol Chem 267: 23479–23483

    CAS  PubMed  Google Scholar 

  135. Tanzi MG, Gabay MP (2002) Association between honey consumption and infant botulism. Pharmacotherapy 22: 1479–1483

    Article  PubMed  Google Scholar 

  136. Dastoor SF, Misch CE, Wang HL (2007) Botulinum toxin (Botox) to enhance facial macroesthetics: A literature review. J Oral Implantol 33: 164–171

    Article  PubMed  Google Scholar 

  137. Callaway JE (2004) Botulinum toxin type B (Myobloc): Pharmacology and biochemistry. Clin Dermatol 22: 23–28

    Article  PubMed  Google Scholar 

  138. Dressler D, Munchau A, Bhatia KP, Quinn NP, Bigalke H (2002) Antibody-induced botulinum toxin therapy failure: Can it be overcome by increased botulinum toxin doses? Eur Neurol 47: 118–121

    Article  CAS  PubMed  Google Scholar 

  139. Dressler D, Bigalke H (2002) Botulinum toxin antibody type A titres after cessation of botulinum toxin therapy. Mov Disord 17: 170–173

    Article  PubMed  Google Scholar 

  140. Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ (1988) Genetic confirmation of identities of neurotoxigenic Clostridium baratii and Clostridium butyricum implicated as agents of infant botulism. J Clin Microbiol 26: 2191–2192

    CAS  PubMed  Google Scholar 

  141. Popoff MR, Marvaud JC (1999) Structural and genomic features of clostridial neurotoxins. In: JE Alouf, JH Freer (eds). The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London, 174–201

    Google Scholar 

  142. Dineen SS, Bradshaw M, Karasek CE, Johnson EA (2004) Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum. FEMS Microbiol Lett 235: 9–16

    Article  CAS  PubMed  Google Scholar 

  143. Oguma K, Inoue K, Fujinaga Y, Yokota K, Watanabe T, Ohyama T, Takeshi K, Inoue K (1999) Structure and function of Clostridium botulinum progenitor toxin. J Toxicol Toxin Rev 18: 17–34

    CAS  Google Scholar 

  144. Quinn CP, Minton NP (2001) Clostridial neurotoxins. In: H Bahl, P Dürre (eds): Clostridia. Biotechnology and Medical Applications. Wiley-VCH, Weinheim, 211–250

    Google Scholar 

  145. Sharma SK, Ramzan MA, Singh BR (2003) Separation of the components of type A botulinum neurotoxin complex by electrophoresis. Toxicon 41: 321–331

    Article  CAS  PubMed  Google Scholar 

  146. Rodriguez Jovita M, Collins MD, East AK (1998) Gene organization and sequence determination of the two botulinum neurotoxin gene clusters in Clostridium botulinum type A(B) strain NCTC 2916. Curr Microbiol 36: 226–231

    Article  CAS  PubMed  Google Scholar 

  147. East AK, Richardson PT, Allaway D, Collins MD, Roberts TA, Thompson DE (1992) Sequence of the gene encoding type F neurotoxin of Clostridium botulinum. FEMS Microbiol Lett 75: 225–230

    Article  CAS  PubMed  Google Scholar 

  148. Sugii S, Ohishi I, Sakaguchi G (1977) Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16: 910–914

    CAS  PubMed  Google Scholar 

  149. Bandyopadhyay S, Clark AW, DasGupta BR, Sathyamoorthy V (1987) Role of the heavy and light chains of botulinum neurotoxin in neuromuscular paralysis. J Biol Chem 262: 2660–2663

    CAS  PubMed  Google Scholar 

  150. Couesnon A, Pereira Y, Popoff MR (2007) Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10: 375–387

    PubMed  Google Scholar 

  151. Jin Y, Takegahara Y, Sugawara Y, Matsumura T, Fujinaga Y (2009) Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins-Differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C. Microbiology 155: 35–45

    Article  CAS  PubMed  Google Scholar 

  152. Maksymowych AB, Simpson LL (1998) Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273: 21950–21957

    Article  CAS  PubMed  Google Scholar 

  153. Park JB, Simpson LL (2003) Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect Immun 71: 1147–1154

    Article  CAS  PubMed  Google Scholar 

  154. Couesnon A, Pereira Y, Popoff MR (2008) Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10: 375–387

    CAS  PubMed  Google Scholar 

  155. Couesnon A, Shimizu T, Popoff MR (2009) Differential entry of botulinum neurotoxin A into neuronal and intestinal cells. Cell Microbiol 11: 289–308

    Article  CAS  PubMed  Google Scholar 

  156. Kitamura M, Takamiya K, Aizawa S, Furukawa K (1999) Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441: 1–3

    CAS  PubMed  Google Scholar 

  157. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312: 592–596

    Article  CAS  PubMed  Google Scholar 

  158. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237

    Article  CAS  PubMed  Google Scholar 

  159. Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279: 30865–30870

    Article  CAS  PubMed  Google Scholar 

  160. Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162: 1293–1303

    Article  CAS  PubMed  Google Scholar 

  161. Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H, Saito M, Kozaki S (2005) Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280: 35164–35171

    Article  CAS  PubMed  Google Scholar 

  162. Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326: 835–847

    Article  CAS  PubMed  Google Scholar 

  163. Yowler BC, Schengrund CL (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43: 9725–9731

    Article  CAS  PubMed  Google Scholar 

  164. Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380: 76–80

    Article  CAS  PubMed  Google Scholar 

  165. Jung N, Haucke V (2007) Clathrin-mediated endocytosis at synapses. Traffic 8: 1129–1136

    Article  CAS  PubMed  Google Scholar 

  166. Morgans CW, Kensel-Hammes P, Hurley JB, Burton K, Idzerda R, McKnight GS, Bajjalieh SM (2009) Loss of the synaptic vesicle protein SV2B results in reduced neurotransmission and altered synaptic vesicle protein expression in the retina. PLoS ONE 4: e5230

    Article  PubMed  CAS  Google Scholar 

  167. Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 54: 570–574

    Article  CAS  PubMed  Google Scholar 

  168. Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4

    Google Scholar 

  169. Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO, Gilmore MA, Fernandez-Salas E, Francis J, Steward LE, Aoki KR, Dolly JO (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283: 16993–17002

    Article  CAS  PubMed  Google Scholar 

  170. Fischer A, Montal M (2007) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci USA 104: 10447–10452

    Article  CAS  PubMed  Google Scholar 

  171. Montal M (2008) Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. Taxicon 54: 565–569

    Article  CAS  Google Scholar 

  172. Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291: 1091–1104

    Article  CAS  PubMed  Google Scholar 

  173. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Südhof TC, Jahn R, Niemann H (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269: 1617–1620

    CAS  PubMed  Google Scholar 

  174. Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: Correlation with its blockade of catecholamine release. Biochemistry 35: 2630–2636

    Article  CAS  PubMed  Google Scholar 

  175. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270: 10566–10570

    Article  CAS  PubMed  Google Scholar 

  176. Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type G light chain: Serotype divergence in substrate recognition. Biochemistry 44: 9574–9580

    Article  CAS  PubMed  Google Scholar 

  177. Chen S, Hall C, Barbieri JT (2008) Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. J Biol Chem 283: 21153–21159

    Article  CAS  PubMed  Google Scholar 

  178. Ahmed SA OM, Ludivico ML, Gilsdorf J, Smith LA (2008) Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. Protein J 27: 151–162

    Article  CAS  PubMed  Google Scholar 

  179. Chen S, Barbieri JT (2006) Unique substrate recognition by botulinum neurotoxins serotypes A and E. J Biol Chem 281: 10906–10911

    Article  CAS  PubMed  Google Scholar 

  180. Chen S, Kim JP, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282: 9621–9627

    Article  CAS  PubMed  Google Scholar 

  181. Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O (2001) Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun 288: 1231–1237

    Article  CAS  PubMed  Google Scholar 

  182. Schmidt JJ, Stafford RG (2005) Botulinum neurotoxin serotype F: Identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity. Biochemistry 44: 4067–4073

    Article  CAS  PubMed  Google Scholar 

  183. Sikorra S, Henke T, Swaminathan S, Galli T, Binz T (2006) Identification of the amino acid residues rendering TI-VAMP insensitive toward botulinum neurotoxin B. J Mol Biol 357: 574–582

    Article  CAS  PubMed  Google Scholar 

  184. Arndt JW, Chai Q, Christian T, Stevens R (2006) Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: Repercussions for VAMP-2 substrate specificity. Biochemistry 45: 3255–3262

    Article  CAS  PubMed  Google Scholar 

  185. Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432: 925–929

    Article  CAS  PubMed  Google Scholar 

  186. Chen S, Kim JJ, Barbieri JT (2007) Mechanism of substrate recognition by botulinum neurotoxin serotype A. J Biol Chem 282: 9621–9627

    Article  CAS  PubMed  Google Scholar 

  187. Smith TJ, Lou J, Geren IN, Forsyth CM, Tsai R, LaPorte SL, Tepp WH, Bradshaw M, Johnson EA, Smith LA, Marks JD (2005) Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 73: 5450–5457

    Article  CAS  PubMed  Google Scholar 

  188. Arndt JW, Jacobson MJ, Abola EE, Forsyth CM, Tepp WH, Marks JD, Johnson EA, Stevens RC (2006) A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1–A4. J Mol Biol 362: 733–742

    Article  CAS  PubMed  Google Scholar 

  189. Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189: 818–832

    Article  CAS  PubMed  Google Scholar 

  190. Edmond BJ, Guerra FA, Blake J, Hempler S (1977) Case of infant botulism in Texas. Tex Med 73: 85–88

    CAS  PubMed  Google Scholar 

  191. Leighton GR (1923) Report to the Scottish Board of Health H.M. Stationery Office, London

    Google Scholar 

  192. Henkel JS, Jacobson M, Tepp W, Pier C, Johnson EA, Barbieri JT (2009) Catalytic properties of botulinum neurotoxin subtypes A3 and A4 (dagger). Biochemistry 48: 2522–2528

    Article  CAS  PubMed  Google Scholar 

  193. Baldwin MR, Tepp WH, Przedpelski A, Pier CL, Bradshaw M, Johnson EA, Barbieri JT (2008) Subunit vaccine against the seven serotypes of botulism. Infect Immun 76: 1314–1318

    Article  CAS  PubMed  Google Scholar 

  194. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: 832–835

    Article  CAS  PubMed  Google Scholar 

  195. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270: 10566–10570

    Article  CAS  PubMed  Google Scholar 

  196. Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: Botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271: 7694–7699

    Article  CAS  PubMed  Google Scholar 

  197. Schiavo G, Rossetto O, Catsicas S, Polverino de Laureto P, DasGupta BR, Benfenati F, Montecucco C (1993) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268: 23784–23787

    CAS  PubMed  Google Scholar 

  198. Schiavo G, Shone CC, Rossetto O, Alexander FC, Montecucco C (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268: 11516–11519

    CAS  PubMed  Google Scholar 

  199. Schiavo G, Malizio C, Trimble WS, Polverino de Laureto P, Milan G, Sugiyama H, Johnson EA, Montecucco C (1994) Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 269: 20213–20216.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Henkel, J.S., Baldwin, M.R., Barbieri, J.T. (2010). Toxins from bacteria. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_1

Download citation

Publish with us

Policies and ethics