Chemical induced alterations in p53 signaling

  • Johan Högberg
  • Ilona Silins
  • Ulla Stenius
Part of the Experientia Supplementum book series (EXS, volume 99)


The p53 protein is one of the most important tumor suppressors. The present review summarizes aspects of p53 function and its role in cancer development. Some of the most well-characterized molecular mechanisms affecting p53 regulation, stabilization, inactivation and downstream events are described. A major focus is on how xenobiotics can interfere with p53 function and on its role in chemical carcinogenesis. In the final section of this chapter we discuss future aspects on how knowledge about p53 can be used in testing of carcinogens and in risk assessment.


Ataxia Telangiectasia Mutate Constitutive Androstane Receptor Homologous Recombination Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oren M, Damalas A, Gottlieb T, Michael D, Taplick J, Leal JF, Maya R, Moas M, Seger R, Taya Y, Ben-Ze’Ev A (2002) Regulation of p53: Intricate loops and delicate balances. Ann N Y Acad Sci 973: 374–383PubMedCrossRefGoogle Scholar
  2. 2.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307–310PubMedCrossRefGoogle Scholar
  3. 3.
    Levine AJ, Hu W, Feng Z (2006) The p53 pathway: What questions remain to be explored? Cell Death Differ 13: 1027–1036PubMedCrossRefGoogle Scholar
  4. 4.
    Soussi T, Leblanc T, Baruchel A, Schaison G (1993) Germline mutations of the p53 tumor-suppressor gene in cancer-prone families: A review. Nouv Rev Fr Hematol 35: 33–36PubMedGoogle Scholar
  5. 5.
    Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221PubMedCrossRefGoogle Scholar
  6. 6.
    Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52PubMedCrossRefGoogle Scholar
  7. 7.
    Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221PubMedCrossRefGoogle Scholar
  8. 8.
    Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311PubMedGoogle Scholar
  9. 9.
    Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347PubMedCrossRefGoogle Scholar
  10. 10.
    de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442PubMedCrossRefGoogle Scholar
  11. 11.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245PubMedCrossRefGoogle Scholar
  12. 12.
    Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132PubMedCrossRefGoogle Scholar
  13. 13.
    Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299PubMedCrossRefGoogle Scholar
  14. 14.
    Vousden KH (2000) P53: Death star. Cell 103: 691–694PubMedCrossRefGoogle Scholar
  15. 15.
    Meek DW, Knippschild U (2003) Posttranslational modification of MDM2. Mol Cancer Res 1: 1017–1026PubMedGoogle Scholar
  16. 16.
    Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677PubMedCrossRefGoogle Scholar
  17. 17.
    Finnberg N, Silins I, Stenius U, Högberg J (2004) Characterizing the role of MDM2 in diethylnitrosamine induced acute liver damage and development of pre-neoplastic lesions. Carcinogenesis 25: 113–122PubMedCrossRefGoogle Scholar
  18. 18.
    Hamstra DA, Bhojani MS, Griffin LB, Laxman B, Ross BD, Rehemtulla A (2006) Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging. Cancer Res 66: 7482–7489PubMedCrossRefGoogle Scholar
  19. 19.
    Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208PubMedCrossRefGoogle Scholar
  20. 20.
    Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G (2006) Keeping p53 in check: Essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13: 927–934PubMedCrossRefGoogle Scholar
  21. 21.
    Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598–11603PubMedCrossRefGoogle Scholar
  22. 22.
    Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26: 3453–3459PubMedCrossRefGoogle Scholar
  23. 23.
    Dornan D,Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O’Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86–92PubMedCrossRefGoogle Scholar
  24. 24.
    Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112: 779–791PubMedCrossRefGoogle Scholar
  25. 25.
    Finch RA, Donoviel DB, Potter D, Shi M, Fan A, Freed DD, Wang CY, Zambrowicz BP, Ramirez-Solis R, Sands AT, Zhang N (2002) Mdmx is a negative regulator of p53 activity in vivo. Cancer Res 62: 3221–3225PubMedGoogle Scholar
  26. 26.
    Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805PubMedCrossRefGoogle Scholar
  27. 27.
    Joerger AC, Fersht AR (2007) Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res 97: 1–23PubMedCrossRefGoogle Scholar
  28. 28.
    Foo RS, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, Ashton AW, Fu W, Mani K, Chin SF et al (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104: 20826–20831PubMedCrossRefGoogle Scholar
  29. 29.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) P53 mutations in human cancers. Science 253: 49–53PubMedCrossRefGoogle Scholar
  30. 30.
    Vousden KH, Lane DP (2007) P53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283PubMedCrossRefGoogle Scholar
  31. 31.
    Levine AJ, Hu W, Feng Z, Gil G (2007) Reconstructing signal transduction pathways: Challenges and opportunities. Ann NY Acad Sci 1115: 32–50PubMedCrossRefGoogle Scholar
  32. 32.
    Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351: 453–456PubMedCrossRefGoogle Scholar
  33. 33.
    Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Dev 12: 2973–2983PubMedCrossRefGoogle Scholar
  34. 34.
    Abraham RT (2004) PI 3-kinase related kinases: ‘Big’ players in stress-induced signaling pathways. DNA Rep 3: 883–887CrossRefGoogle Scholar
  35. 35.
    Tang X, Hui ZG, Cui XL, Garg R, Kastan MB, Xu B (2008) A novel ATM-dependent pathway regulates protein phosphatase 1 in response to DNA damage. Mol Cell Biol 28: 2559–2566PubMedCrossRefGoogle Scholar
  36. 36.
    Kitagawa R, Kastan MB (2005) The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol 70: 99–109PubMedCrossRefGoogle Scholar
  37. 37.
    Olsson A, Manzl C, Strasser A, Villunger A (2007) How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14: 1561–1575PubMedCrossRefGoogle Scholar
  38. 38.
    Toledo F, Wahl GM (2006) Regulating the p53 pathway: In vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166PubMedCrossRefGoogle Scholar
  40. 40.
    Shiloh Y, Kastan MB (2001) ATM: Genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83: 209–254PubMedCrossRefGoogle Scholar
  41. 41.
    Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y et al (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev 15: 1067–1077PubMedCrossRefGoogle Scholar
  42. 42.
    Hurley PJ, Bunz F (2007) ATM and ATR: Components of an integrated circuit. Cell Cycle 6: 414–417PubMedGoogle Scholar
  43. 43.
    Paulsen RD, Cimprich KA (2007) The ATR pathway: Fine-tuning the fork. DNA Rep 6: 953–966CrossRefGoogle Scholar
  44. 44.
    Burma S, Chen DJ (2004) Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Rep 3: 909–918CrossRefGoogle Scholar
  45. 45.
    D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G et al (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol 4: 11–19PubMedCrossRefGoogle Scholar
  46. 46.
    Meek DW (1997) Post-translational modification of p53 and the integration of stress signals. Pathol Biol 45: 804–814PubMedGoogle Scholar
  47. 47.
    El-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8: 345–357PubMedCrossRefGoogle Scholar
  48. 48.
    Sun Y (2006) P53 and its downstream proteins as molecular targets of cancer. Mol Carcinog 45: 409–415PubMedCrossRefGoogle Scholar
  49. 49.
    Bensaad K, Vousden KH (2007) P53: New roles in metabolism. Trends Cell Biol 17: 286–291PubMedCrossRefGoogle Scholar
  50. 50.
    Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219PubMedCrossRefGoogle Scholar
  51. 51.
    Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, Triboulet R, Bossis G, Shmueli A, Rodriguez MS et al (2006) E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127: 775–788PubMedCrossRefGoogle Scholar
  52. 52.
    Das S, Boswell SA, Aaronson SA, Lee SW (2008) P53 promoter selection: Choosing between life and death. Cell Cycle 7: 154–157PubMedGoogle Scholar
  53. 53.
    Aylon Y, Oren M (2007) Living with p53, dying of p53. Cell 130: 597–600PubMedCrossRefGoogle Scholar
  54. 54.
    Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiationinduced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557PubMedCrossRefGoogle Scholar
  55. 55.
    Philipp J, Vo K, Gurley KE, Seidel K, Kemp CJ (1999) Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. Oncogene 18: 4689–4698PubMedCrossRefGoogle Scholar
  56. 56.
    Weinberg WC, Fernandez-Salas E, Morgan DL, Shalizi A, Mirosh E, Stanulis E, Deng C, Hennings H, Yuspa SH (1999) Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res 59: 2050–2054PubMedGoogle Scholar
  57. 57.
    De la Cueva E, Garcia-Cao I, Herranz M, Lopez P, Garcia-Palencia P, Flores JM, Serrano M, Fernandez-Piqueras J, Martin-Caballero J (2006) Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 25: 4128–4132PubMedCrossRefGoogle Scholar
  58. 58.
    Efeyan A, Collado M, Velasco-Miguel S, Serrano M (2007) Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene 26: 1645–1649PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B, Liebermann DA (2005) Hematopoietic cells from Gadd45a-and Gadd45b-deficient mice are sensitized to genotoxic204 stress-induced apoptosis. Oncogene 24: 7170–7179PubMedCrossRefGoogle Scholar
  60. 60.
    Hermeking H, Benzinger A (2006) 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol 16: 183–192PubMedCrossRefGoogle Scholar
  61. 61.
    Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96: 3706–3711PubMedCrossRefGoogle Scholar
  62. 62.
    Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4: 139–163PubMedCrossRefGoogle Scholar
  63. 63.
    Robles AI, Bemmels NA, Foraker AB, Harris CC (2001) APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res 61: 6660–6664PubMedGoogle Scholar
  64. 64.
    Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y (2000) P53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862PubMedCrossRefGoogle Scholar
  65. 65.
    Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217PubMedCrossRefGoogle Scholar
  66. 66.
    Helton ES, Chen X (2007) P53 modulation of the DNA damage response. J Cell Biochem 100: 883–896PubMedCrossRefGoogle Scholar
  67. 67.
    Hollander MC, Philburn RT, Patterson AD, Velasco-Miguel S, Friedberg EC, Linnoila RI, Fornace AJ Jr, (2005) Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Natl Acad Sci USA 102: 13200–13205PubMedCrossRefGoogle Scholar
  68. 68.
    Leveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, Wasylyk B (1996) Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J 15: 1615–1624PubMedGoogle Scholar
  69. 69.
    Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang JY (2003) Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci USA 100: 2420–2425PubMedCrossRefGoogle Scholar
  70. 70.
    Achanta G, Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res 64: 6233–6239PubMedCrossRefGoogle Scholar
  71. 71.
    Zhou J, Ahn J, Wilson SH, Prives C (2001) A role for p53 in base excision repair. EMBO J 20: 914–923PubMedCrossRefGoogle Scholar
  72. 72.
    Lin Q, Clark AB, McCulloch SD, Yuan T, Bronson RT, Kunkel TA, Kucherlapati R (2006) Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res 66: 87–94PubMedCrossRefGoogle Scholar
  73. 73.
    Romanova LY, Willers H, Blagosklonny MV, Powell SN (2004) The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene 23: 9025–9033PubMedCrossRefGoogle Scholar
  74. 74.
    Dahm-Daphi J, Hubbe P, Horvath F, El-Awady RA, Bouffard KE, Powell SN, Willers H (2005) Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene 24: 1663–1672PubMedCrossRefGoogle Scholar
  75. 75.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740PubMedCrossRefGoogle Scholar
  76. 76.
    Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26: 7773–7779PubMedCrossRefGoogle Scholar
  77. 77.
    Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913PubMedCrossRefGoogle Scholar
  78. 78.
    Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870PubMedCrossRefGoogle Scholar
  79. 79.
    Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637PubMedCrossRefGoogle Scholar
  80. 80.
    Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA, Serrano M (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448: 375–379PubMedCrossRefGoogle Scholar
  81. 81.
    Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C et al (2002) P53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53PubMedCrossRefGoogle Scholar
  82. 82.
    Serrano M, Blasco MA (2007) Cancer and ageing: Convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8: 715–722PubMedCrossRefGoogle Scholar
  83. 83.
    Ørsted DD, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG (2007) Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med 204: 1295–1301PubMedCrossRefGoogle Scholar
  84. 84.
    van Heemst D, Mooijaart SP, Beekman M, Schreuder J, de Craen AJ, Brandt BW, Slagboom PE, Westendorp RG (2005) Variation in the human TP53 gene affects old age survival and cancer mortality. Exp Gerontol 40: 11–15PubMedCrossRefGoogle Scholar
  85. 85.
    Bojesen SE, Nordestgaard BG (2008) The common germline Arg72Pro polymorphism of p53 and increased longevity in humans. Cell Cycle 7: 158–163PubMedGoogle Scholar
  86. 86.
    Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P et al (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708PubMedCrossRefGoogle Scholar
  87. 87.
    Soussi T (2007) P53 alterations in human cancer: More questions than answers. Oncogene 26: 2145–2156PubMedCrossRefGoogle Scholar
  88. 88.
    Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87: 159–170PubMedCrossRefGoogle Scholar
  89. 89.
    Jenkins GJ, Doak SH, Griffiths AP, Tofazzal N, Shah V, Baxter JN, Parry JM (2003) Early p53 mutations in nondysplastic Barrett’s tissue detected by the restriction site mutation (RSM) methodology. Br J Cancer 88: 1271–1276PubMedCrossRefGoogle Scholar
  90. 90.
    Morgan C, Jenkins GJ, Ashton T, Griffiths AP, Baxter JN, Parry EM, Parry JM (2003) Detection of p53 mutations in precancerous gastric tissue. Br J Cancer 89: 1314–1319PubMedCrossRefGoogle Scholar
  91. 91.
    Ozturk M (1991) P53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338: 1356–1359PubMedCrossRefGoogle Scholar
  92. 92.
    Aguilar F, Hussain SP, Cerutti P (1993) Aflatoxin B1 induces the transversion of G®T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA 90: 8586–8590PubMedCrossRefGoogle Scholar
  93. 93.
    Sohn S, Jaitovitch-Groisman I, Benlimame N, Galipeau J, Batist G, Alaoui-Jamali MA (2000) Retroviral expression of the hepatitis B virus × gene promotes liver cell susceptibility to carcinogen-induced site specific mutagenesis. Mutat Res 460: 17–28PubMedGoogle Scholar
  94. 94.
    Hussain SP, Schwank J, Staib F, Wang XW, Harris CC (2007) TP53 mutations and hepatocellular carcinoma: Insights into the etiology and pathogenesis of liver cancer. Oncogene 26: 2166–2176PubMedCrossRefGoogle Scholar
  95. 95.
    Barbin A, Froment O, Boivin S, Marion M-J, Belpoggi F, Maltoni C, Montesano R (1997) P53 gene mutation pattern in rat liver tumors induced by vinyl chloride. Cancer Res 57: 1695–1698PubMedGoogle Scholar
  96. 96.
    Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274: 430–432CrossRefGoogle Scholar
  97. 97.
    Hagiwara N, Mechanic LE, Trivers GE, Cawley HL, Taga M, Bowman ED, Kumamoto K, He P, Bernard M, Doja S et al (2006) Quantitative detection of p53 mutations in plasma DNA from tobacco smokers. Cancer Res 66: 8309–8317PubMedCrossRefGoogle Scholar
  98. 98.
    Taylor JA, Li Y, He M, Mason T, Mettlin C, Vogler WJ, Maygarden S, Liu E (1996) P53 mutations in bladder tumors from arylamine-exposed workers. Cancer Res 56: 294–298PubMedGoogle Scholar
  99. 99.
    Benjamin CL, Ananthaswamy HN (2007) P53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol 224: 241–248PubMedCrossRefGoogle Scholar
  100. 100.
    Le Calvez F, Mukeria A, Hunt JD, Kelm O, Hung RJ, Taniere P, Brennan P, Boffetta P, Zaridze DG, Hainaut P (2005) TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: Distinct patterns in never, former, and current smokers. Cancer Res 65: 5076–5083PubMedCrossRefGoogle Scholar
  101. 101.
    Feng Z, Hu W, Hu Y, Tang MS (2006) Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA 103: 15404–15409PubMedCrossRefGoogle Scholar
  102. 102.
    Kim SI, Pfeifer GP, Besaratinia A (2007) Lack of mutagenicity of acrolein-induced DNA adducts in mouse and human cells. Cancer Res 67: 11640–11647PubMedCrossRefGoogle Scholar
  103. 103.
    Song H, Hollstein M, Xu Y (2007) P53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9: 573–580PubMedCrossRefGoogle Scholar
  104. 104.
    Benjamin CL, Ullrich SE, Kripke ML, Ananthaswamy HN (2008) P53 tumor suppressor gene: A critical molecular target for UV induction and prevention of skin cancer. Photochem Photobiol 84: 55–62PubMedGoogle Scholar
  105. 105.
    Lind H, Ekstrom PO, Ryberg D, Skaug V, Andreassen T, Stangeland L, Haugen A, Zienolddiny S (2007) Frequency of TP53 mutations in relation to Arg72Pro genotypes in non small cell lung cancer. Cancer Epidemiol Biomarkers Prev 16: 2077–2081PubMedCrossRefGoogle Scholar
  106. 106.
    Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2007) Genomic methylation of peripheral blood leukocyte DNA: Influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86: 1179–1186PubMedGoogle Scholar
  107. 107.
    Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89: 431–437PubMedCrossRefGoogle Scholar
  108. 108.
    Shen S, Lee J, Weinfeld M, Le XC (2008) Attenuation of DNA damage-induced p53 expression by arsenic: A possible mechanism for arsenic co-carcinogenesis. Mol Carcinog 47: 508–518PubMedCrossRefGoogle Scholar
  109. 109.
    Mass MJ, Wang L (1997) Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: A model for a mechanism of carcinogenesis. Mutat Res 386: 263–277PubMedCrossRefGoogle Scholar
  110. 110.
    Hamadeh HK, Vargas M, Lee E, Menzel DB (1999) Arsenic disrupts cellular levels of p53 and mdm2: A potential mechanism of carcinogenesis. Biochem Biophys Res Commun 263: 446–449PubMedCrossRefGoogle Scholar
  111. 111.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134PubMedCrossRefGoogle Scholar
  112. 112.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752PubMedCrossRefGoogle Scholar
  113. 113.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB et al (2007) P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307PubMedCrossRefGoogle Scholar
  114. 114.
    Raver-Shapira N, Oren M (2007) Tiny actors, great roles: MicroRNAs in p53’s service. Cell Cycle 6: 2656–2661PubMedGoogle Scholar
  115. 115.
    Gorospe M, de Cabo R (2008) AsSIRTing the DNA damage response. Trends Cell Biol 18: 77–83PubMedCrossRefGoogle Scholar
  116. 116.
    Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20: 267–275PubMedCrossRefGoogle Scholar
  117. 117.
    Gurumurthy S, Hezel AF, Berger JH, Bosenberg MW, Bardeesy N (2008) LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. Cancer Res 68: 55–63PubMedCrossRefGoogle Scholar
  118. 118.
    Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M, Shimizu E, Minna JD, Yokota J (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26: 5911–5918PubMedCrossRefGoogle Scholar
  119. 119.
    Pääjärvi G, Roudier E, Crisby M, Högberg J, Stenius U (2005) HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage. FASEB J 19: 476–478PubMedGoogle Scholar
  120. 120.
    Roudier E, Mistafa O, Stenius U (2006) Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs. Mol Cancer Ther 5: 2706–2715PubMedCrossRefGoogle Scholar
  121. 121.
    Mistafa O, Högberg J, Stenius U (2008) Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells. Biochem Biophys Res Commun 365: 131–136PubMedCrossRefGoogle Scholar
  122. 122.
    Larsson SC, Wolk A (2008) Excess body fatness: An important cause of most cancers. Lancet 371: 536–537PubMedCrossRefGoogle Scholar
  123. 123.
    Malmlof M, Roudier E, Högberg J, Stenius U (2007) MEK-ERK-mediated phosphorylation of Mdm2 at Ser-166 in hepatocytes. Mdm2 is activated in response to inhibited Akt signaling. J Biol Chem 282: 2288–2296PubMedCrossRefGoogle Scholar
  124. 124.
    Marlowe JL, Puga A (2005) Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 96: 1174–1184PubMedCrossRefGoogle Scholar
  125. 125.
    Worner W, Schrenk D (1996) Influence of liver tumor promoters on apoptosis in rat hepatocytes induced by 2-acetylaminofluorene, ultraviolet light, or transforming growth factor beta 1. Cancer Res 56: 1272–1278PubMedGoogle Scholar
  126. 126.
    Paajarvi G, Viluksela M, Pohjanvirta R, Stenius U, Högberg J (2005) TCDD activates Mdm2 and attenuates the p53 response to DNA damaging agents. Carcinogenesis 26: 201–208PubMedCrossRefGoogle Scholar
  127. 127.
    Nelson DM, Bhaskaran V, Foster WR, Lehman-McKeeman LD (2006) P53-independent induction of rat hepatic Mdm2 following administration of phenobarbital and pregnenolone 16a-carbonitrile. Toxicol Sci 94: 272–280PubMedCrossRefGoogle Scholar
  128. 128.
    Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR (2004) The orphan nuclear Chemical induced alterations in p53 signaling 207 receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res 64: 7197–7200PubMedCrossRefGoogle Scholar
  129. 129.
    Tapiainen T, Jarvinen K, Paakko P, Bjelogrlic N, Vahakangas K (1996) TPA decreases the p53 response to benzo[a]pyrene-DNA adducts in vivo in mouse skin. Carcinogenesis 17: 1377–1380PubMedCrossRefGoogle Scholar
  130. 130.
    Mukherjee JJ, Sikka HC (2006) Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkB activation: Role of p38 MAP kinase. Carcinogenesis 27: 631–638PubMedCrossRefGoogle Scholar
  131. 131.
    Serpi R, Piispala J, Jarvilehto M, Vahakangas K (1999) Thapsigargin has similar effect on p53 protein response to benzo[a]pyrene-DNA adducts as TPA in mouse skin. Carcinogenesis 20: 1755–1760PubMedCrossRefGoogle Scholar
  132. 132.
    Kardalinou E, Zhelev N, Hazzalin CA, Mahadevan LC (1994) Anisomycin and rapamycin define an area upstream of p70/85S6k containing a bifurcation to histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction. Mol Cell Biol 14: 1066–1074PubMedGoogle Scholar
  133. 133.
    Li M, Zhang Z, Hill DL, Wang H, Zhang R (2007) Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 67: 1988–1996PubMedCrossRefGoogle Scholar
  134. 134.
    Kerlikowske K, Miglioretti DL, Buist DS, Walker R, Carney PA (2007) Declines in invasive breast cancer and use of postmenopausal hormone therapy in a screening mammography population. J Natl Cancer Inst 99: 1335–1339PubMedCrossRefGoogle Scholar
  135. 135.
    Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD (2002) Postmenopausal hormone replacement therapy: Scientific review. JAMA 288: 872–881PubMedCrossRefGoogle Scholar
  136. 136.
    Kinyamu HK, Archer TK (2003) Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Mol Cell Biol 23: 5867–5881PubMedCrossRefGoogle Scholar
  137. 137.
    Medina D (2004) Breast cancer: The protective effect of pregnancy. Clin Cancer Res 10: 380S–384SPubMedCrossRefGoogle Scholar
  138. 138.
    Liu G, Schwartz JA, Brooks SC (2000) Estrogen receptor protects p53 from deactivation by human double minute-2. Cancer Res 60: 1810–1814PubMedGoogle Scholar
  139. 139.
    Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H, Cavailles V (2007) Differential regulation of estrogen receptor a turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67: 5513–5521PubMedCrossRefGoogle Scholar
  140. 140.
    Sayeed A, Konduri SD, Liu W, Bansal S, Li F, Das GM (2007) Estrogen receptor a inhibits p53-mediated transcriptional repression: Implications for the regulation of apoptosis. Cancer Res 67: 7746–7755PubMedCrossRefGoogle Scholar
  141. 141.
    Li M, Zhang Z, Hill DL, Chen X,Wang H, Zhang R (2005) Genistein, a dietary isoflavone, downregulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res 65: 8200–8208PubMedCrossRefGoogle Scholar
  142. 142.
    Newbold RR, Banks EP, Bullock B, Jefferson WN (2001) Uterine adenocarcinoma in mice treated neonatally with genistein. Cancer Res 61: 4325–4328PubMedGoogle Scholar
  143. 143.
    Hu W, Feng Z, Ma L, Wagner J, Rice JJ, Stolovitzky G, Levine AJ (2007) A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res 67: 2757–2765PubMedCrossRefGoogle Scholar
  144. 144.
    Lind H, Zienolddiny S, Ekstrom PO, Skaug V, Haugen A (2006) Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer 119: 718–721PubMedCrossRefGoogle Scholar
  145. 145.
    Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ Jr, Appella E, Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278: 37536–37544PubMedCrossRefGoogle Scholar
  146. 146.
    Pääjärvi G, Jernström B, Seidel A, Stenius U (2008) Anti-diol epoxide of benzo[a]pyrene induces transient Mdm2 and p53 Ser15 phosphorylation, while anti-diol epoxide of dibenzo[a,l]pyrene induces a nontransient p53 Ser15 phosphorylation. Mol Carcinog 47: 301–309PubMedCrossRefGoogle Scholar
  147. 147.
    Malmlöf M, Pääjärvi G, Högberg J, Stenius U (2008) Mdm2 as a sensitive and mechanistically informative marker for genotoxicity induced by benzo[a]pyrene and dibenzo[a,l]pyrene. Toxicol Sci 102: 232–240PubMedCrossRefGoogle Scholar
  148. 148.
    French J, Storer RD, Donehower LA (2001) The nature of the heterozygous Trp53 knockout model for identification of mutagenic carcinogens. Toxicol Pathol 29 Suppl: 24-29Google Scholar
  149. 149.
    Donehower LA, French JE, Hursting SD (2005) The utility of genetically altered mouse models for cancer research. Mutat Res 576: 1–3PubMedGoogle Scholar
  150. 150.
    Storer RD, French JE, Haseman J, Hajian G, LeGrand EK, Long GG, Mixson LA, Ochoa R, Sagartz JE, Soper KA (2001) P53(+/-) hemizygous knockout mouse: Overview of available data. Toxicol Pathol 29 Suppl: 30-50Google Scholar
  151. 151.
    Venkatachalam S, Tyner SD, Pickering CR, Boley S, Recio L, French JE, Donehower LA (2001) Is p53 haploinsufficient for tumor suppression? Implications for the p53(+/-) mouse model in carcinogenicity testing. Toxicol Pathol 29 Suppl: 147–154PubMedCrossRefGoogle Scholar
  152. 152.
    Storer RD (2000) Current status and use of short/medium term models for carcinogenicity testing of pharmaceuticals-Scientific perspective. Toxicol Lett 112-113: 557–566PubMedCrossRefGoogle Scholar
  153. 153.
    Hirata A, Tsukamoto T,Yamamoto M, Takasu S, Sakai H, Ban H,Yanai T, Masegi T, Donehower LA, Tatematsu M (2007) Organ-dependent susceptibility of p53 knockout mice to 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Cancer Sci 98: 1164–1173PubMedCrossRefGoogle Scholar
  154. 154.
    Mitsumori K (2002) Evaluation on carcinogenicity of chemicals using transgenic mice. Toxicology 181-182: 241–244PubMedCrossRefGoogle Scholar
  155. 155.
    Pritchard JB, French JE, Davis BJ, Haseman JK (2003) The role of transgenic mouse models in carcinogen identification. Environ Health Perspect 111: 444–454PubMedGoogle Scholar
  156. 156.
    Finnberg N, Stenius U, Högberg J (2004) Heterozygous p53-deficient (-/-) mice develop fewer p53-negative preneoplastic focal liver lesions in response to treatment with diethylnitrosamine than do wild-type (+/+) mice. Cancer Lett 207: 149–155PubMedCrossRefGoogle Scholar
  157. 157.
    Jaworski M, Hailfinger S, Buchmann A, Hergenhahn M, Hollstein M, Ittrich C, Schwarz M (2005) Human p53 knock-in (hupki) mice do not differ in liver tumor response from their counterparts with murine p53. Carcinogenesis 26: 1829–1834PubMedCrossRefGoogle Scholar
  158. 158.
    Tong WM, Lee MK, Galendo D, Wang ZQ, Sabapathy K (2006) Aflatoxin-B exposure does not lead to p53 mutations but results in enhanced liver cancer of Hupki (human p53 knock-in) mice. Int J Cancer 119: 745–749PubMedCrossRefGoogle Scholar
  159. 159.
    Silins I, Stenius U, Högberg J (2004) Induction of preneoplastic rat liver lesions with an attenuated p53 response by low doses of diethylnitrosamine. Arch Toxicol 78: 540–548PubMedCrossRefGoogle Scholar
  160. 160.
    Van Gijssel HE, Ohlson LC, Torndal UB, Mulder GJ, Eriksson LC, Porsch-Hallstrom I, Meerman JH (2000) Loss of nuclear p53 protein in preneoplastic rat hepatocytes is accompanied by Mdm2 and Bcl-2 overexpression and by defective response to DNA damage in vivo. Hepatology 32: 701–710PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Johan Högberg
    • 1
  • Ilona Silins
    • 1
  • Ulla Stenius
    • 1
  1. 1.Institute of Environmental MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations