Advertisement

Genotoxicity: damage to DNA and its consequences

  • David H. Phillips
  • Volker M. Arlt
Part of the Experientia Supplementum book series (EXS, volume 99)

Abstract

A genotoxin is a chemical or agent that can cause DNA or chromosomal damage. Such damage in a germ cell has the potential to cause a heritable altered trait (germline mutation). DNA damage in a somatic cell may result in a somatic mutation, which may lead to malignant transformation (cancer). Many in vitro and in vivo tests for genotoxicity have been developed that, with a range of endpoints, detect DNA damage or its biological consequences in prokaryotic (e.g. bacterial) or eukaryotic (e.g. mammalian, avian or yeast) cells. These assays are used to evaluate the safety of environmental chemicals and consumer products and to explore the mechanism of action of known or suspected carcinogens. Many chemical carcinogens/ mutagens undergo metabolic activation to reactive species that bind covalently to DNA, and the DNA adducts thus formed can be detected in cells and in human tissues by a variety of sensitive techniques. The detection and characterisation of DNA adducts in human tissues provides clues to the aetiology of human cancer. Characterisation of gene mutations in human tumours, in common with the known mutagenic profiles of genotoxins in experimental systems, may provide further insight into the role of environmental mutagens in human cancer.

Keywords

Comet Assay Accelerator Mass Spectrometry Aristolochic Acid Micronucleus Test Adduct Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8: 1–12PubMedGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70PubMedCrossRefGoogle Scholar
  3. 3.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767PubMedCrossRefGoogle Scholar
  4. 4.
    Kirkland DJ, Hayashi M, MacGregor JT, Muller L, Schechtman LM, Sofuni T (2003) Summary of major conclusions. Mutat Res 540: 123–125PubMedGoogle Scholar
  5. 5.
    Cimino MC (2006) Comparative overview of current international strategies and guidelines for genetic toxicology testing for regulatory purposes. Environ Mol Mutagen 47: 362–390PubMedCrossRefGoogle Scholar
  6. 6.
    Tweats DJ, Scott AD, Westmoreland C, Carmichael PL (2007) Determination of genetic toxicity and potential carcinogenicity in vitro-Challenges post the Seventh Amendment to the European Cosmetics Directive. Mutagenesis 22: 5–13PubMedCrossRefGoogle Scholar
  7. 7.
    Ames BN, Durston WE,Yamasaki E, Lee FD (1973) Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70: 2281–2285PubMedCrossRefGoogle Scholar
  8. 8.
    Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113: 173–215PubMedGoogle Scholar
  9. 9.
    Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455: 29–60PubMedGoogle Scholar
  10. 10.
    Mortelmans K (2006) Isolation of plasmid pKM101 in the Stocker laboratory. Mutat Res 612: 151–164PubMedCrossRefGoogle Scholar
  11. 11.
    Einisto P, Watanabe M, Ishidate M Jr, Nohmi T (1991) Mutagenicity of 30 chemicals in Salmonella typhimurium strains possessing different nitroreductase or O-acetyltransferase activities. Mutat Res 259: 95–102PubMedCrossRefGoogle Scholar
  12. 12.
    Yamada M, Espinosa-Aguirre JJ, Watanabe M, Matsui K, Sofuni T, Nohmi T (1997) Targeted disruption of the gene encoding the classical nitroreductase enzyme in Salmonella typhimurium Ames test strains TA1535 and TA1538. Mutat Res 375: 9–17PubMedGoogle Scholar
  13. 13.
    Glatt H, Meinl W (2005) Sulfotransferases and acetyltransferases in mutagenicity testing: Technical aspects. Methods Enzymol 400: 230–249PubMedCrossRefGoogle Scholar
  14. 14.
    Clements J (2000) The mouse lymphoma assay. Mutat Res 455: 97–110PubMedGoogle Scholar
  15. 15.
    Clive D, Flamm WG, Machesko MR, Bernheim NJ (1972) A mutational assay system using the thymidine kinase locus in mouse lymphoma cells. Mutat Res 16: 77–87PubMedGoogle Scholar
  16. 16.
    Clive D, Johnson KO, Spector JF, Batson AG, Brown MM (1979) Validation and characterization of the L5178Y/TK+/-mouse lymphoma mutagen assay system. Mutat Res 59: 61–108PubMedGoogle Scholar
  17. 17.
    Moore MM, Clive D, Hozier JC, Howard BE, Batson AG, Turner NT, Sawyer J (1985) Analysis of trifluorothymidine-resistant (TFTr) mutants of L5178Y/TK+/-mouse lymphoma cells. Mutat Res 151: 161–174PubMedGoogle Scholar
  18. 18.
    Moore MM, Honma M, Clements J, Bolcsfoldi G, Burlinson B, Cifone M, Clarke J, Clay P, Doppalapudi R, Fellows M et al (2007) Mouse lymphoma thymidine kinase gene mutation assay: Meeting of the International Workshop on Genotoxicity Testing, San Francisco, 2005, recommendations for 24-h treatment. Mutat Res 627: 36–40PubMedGoogle Scholar
  19. 19.
    Nohmi T, Suzuki T, Masumura K (2000) Recent advances in the protocols of transgenic mouse mutation assays. Mutat Res 455: 191–215PubMedGoogle Scholar
  20. 20.
    Lambert IB, Singer TM, Boucher SE, Douglas GR (2005) Detailed review of transgenic rodent mutation assays. Mutat Res 590: 1–280PubMedGoogle Scholar
  21. 21.
    Gossen JA, de Leeuw WJ, Tan CH, Zwarthoff EC, Berends F, Lohman PH, Knook DL, Vijg J (1989) Efficient rescue of integrated shuttle vectors from transgenic mice: A model for studying mutations in vivo. Proc Natl Acad Sci USA 86: 7971–7975PubMedCrossRefGoogle Scholar
  22. 22.
    Kohler SW, Provost GS, Fieck A, Kretz PL, Bullock WO, Sorge JA, Putman DL, Short JM (1991) Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc Natl Acad Sci USA 88: 7958–7962PubMedCrossRefGoogle Scholar
  23. 23.
    Heddle JA, Dean S, Nohmi T, Boerrigter M, Casciano D, Douglas GR, Glickman BW, Gorelick NJ, Mirsalis JC, Martus HJ et al (2000) In vivo transgenic mutation assays. Environ Mol Mutagen 35: 253–259PubMedCrossRefGoogle Scholar
  24. 24.
    Thybaud V, Dean S, Nohmi T, de Boer J, Douglas GR, Glickman BW, Gorelick NJ, Heddle JA, Heflich RH, Lambert I et al (2003) In vivo transgenic mutation assays. Mutat Res 540: 141–151PubMedGoogle Scholar
  25. 25.
    Jakubczak JL, Merlino G, French JE, Muller WJ, Paul B, Adhya S, Garges S (1996) Analysis of genetic instability during mammary tumor progression using a novel selection-based assay for in vivo mutations in a bacteriophage l transgene target. Proc Natl Acad Sci USA 93: 9073–9078PubMedCrossRefGoogle Scholar
  26. 26.
    Nohmi T, Katoh M, Suzuki H, Matsui M, Yamada M, Watanabe M, Suzuki M, Horiya N, Ueda O, Shibuya T et al (1996) A new transgenic mouse mutagenesis test system using Spi-and 6-thioguanine selections. Environ Mol Mutagen 28: 465–470PubMedCrossRefGoogle Scholar
  27. 27.
    Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R et al (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat Res 463: 111–172PubMedCrossRefGoogle Scholar
  28. 28.
    Parry EM, Parry JM (1995) In vitro cytogenetics and aneuploidy. In: DH Phillips, S Venitt (eds): Environmental Mutagenesis. BIOS Scientific Publishers, Oxford, 121–139Google Scholar
  29. 29.
    Dean BJ, Danford N (1984) Assays for the detection of chemically-induced chromosome damage in cultured mammalian cells. In: S Venitt, JM Parry (eds): Mutagenicity Testing-A Practical Approach. IRL Press, Oxford, 187–232Google Scholar
  30. 30.
    Bonassi S, Ugolini D, Kirsch-Volders M, Stromberg U, Vermeulen R, Tucker JD (2005) Human population studies with cytogenetic biomarkers: Review of the literature and future prospectives. Environ Mol Mutagen 45: 258–270PubMedCrossRefGoogle Scholar
  31. 31.
    Norppa H, Bonassi S, Hansteen IL, Hagmar L, Stromberg U, Rossner P, Boffetta P, Lindholm C, Gundy S, Lazutka J et al (2006) Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res 600: 37–45PubMedGoogle Scholar
  32. 32.
    Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147: 29–36PubMedGoogle Scholar
  33. 33.
    Kirsch-Volders M, Vanhauwaert A, De Boeck M, Decordier I (2002) Importance of detecting numerical versus structural chromosome aberrations. Mutat Res 504: 137–148PubMedGoogle Scholar
  34. 34.
    Eastmond DA, Pinkel D (1990) Detection of aneuploidy and aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome-specific DNA probes. Mutat Res 234: 303–318PubMedGoogle Scholar
  35. 35.
    Van Hummelen P, Kirsch-Volders M (1990) An improved method for the ‘in vitro’ micronucleus test using human lymphocytes. Mutagenesis 5: 203–204PubMedCrossRefGoogle Scholar
  36. 36.
    Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600: 58–66PubMedGoogle Scholar
  37. 37.
    Decordier I, Kirsch-Volders M (2006) The in vitro micronucleus test: From past to future. Mutat Res 607: 2–4PubMedGoogle Scholar
  38. 38.
    Corvi R, Albertini S, Hartung T, Hoffmann S, Maurici D, Pfuhler S, van Benthem J, Vanparys P (2008) ECVAM retrospective validation of in vitro micronucleus test (MNT). Mutagenesis 23: 271–283PubMedCrossRefGoogle Scholar
  39. 39.
    Hayashi M, Tice RR, MacGregor JT, Anderson D, Blakey DH, Kirsh-Volders M, Oleson FB Jr, Pacchierotti F, Romagna F, Shimada H et al (1994) In vivo rodent erythrocyte micronucleus assay. Mutat Res 312: 293–304PubMedGoogle Scholar
  40. 40.
    Hayashi M, MacGregor JT, Gatehouse DG, Adler ID, Blakey DH, Dertinger SD, Krishna G, Morita T, Russo A, Sutou S (2000) In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. Environ Mol Mutagen 35: 234–252PubMedCrossRefGoogle Scholar
  41. 41.
    Hayashi M, Tice RR, MacGregor JT, Anderson D, Blakey DH, Kirsh-Volders M, Oleson FB Jr, Pacchierotti F, Romagna F, Shimada H et al (1994) In vivo rodent erythrocyte micronucleus assay. Mutat Res 312: 293–304PubMedGoogle Scholar
  42. 42.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184–191PubMedCrossRefGoogle Scholar
  43. 43.
    Speit G, Hartmann A (2005) The comet assay: A sensitive genotoxicity test for the detection of DNA damage. Methods Mol Biol 291: 85–95PubMedGoogle Scholar
  44. 44.
    Olive PL, Banath JP (2006) The comet assay: A method to measure DNA damage in individual cells. Nat Protoc 1: 23–29PubMedCrossRefGoogle Scholar
  45. 45.
    Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: Topical issues. Mutagenesis 23: 143–151PubMedCrossRefGoogle Scholar
  46. 46.
    Collins AR (2004) The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol Biotechnol 26: 249–261PubMedCrossRefGoogle Scholar
  47. 47.
    Smith CC, O’Donovan MR, Martin EA (2006) HOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21: 185–190PubMedCrossRefGoogle Scholar
  48. 48.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35: 206–221PubMedCrossRefGoogle Scholar
  49. 49.
    Moller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 9: 1005–1015PubMedGoogle Scholar
  50. 50.
    Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23: 207–221PubMedCrossRefGoogle Scholar
  51. 51.
    Hakura A, Shimada H, Nakajima M, Sui H, Kitamoto S, Suzuki S, Satoh T (2005) Salmonella/human S9 mutagenicity test: A collaborative study with 58 compounds. Mutagenesis 20: 217–228PubMedCrossRefGoogle Scholar
  52. 52.
    Doehmer J (2006) Predicting drug metabolism-dependent toxicity for humans with a genetically engineered cell battery. Altern Lab Anim 34: 561–575PubMedGoogle Scholar
  53. 53.
    Brambilla G, Martelli A (2004) Failure of the standard battery of short-term tests in detecting some rodent and human genotoxic carcinogens. Toxicology 196: 1–19PubMedCrossRefGoogle Scholar
  54. 54.
    Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21: 361–370PubMedCrossRefGoogle Scholar
  55. 55.
    Poirier MC, Santella RM, Weston A (2000) Carcinogen macromolecular adducts and their measurement. Carcinogenesis 21: 353–359PubMedCrossRefGoogle Scholar
  56. 56.
    Phillips DH, Farmer PB, Beland FA, Nath RG, Poirier MC, Reddy MV, Turteltaub KW (2000) Methods of DNA adduct determination and their application to testing compounds for genotoxicity. Environ Mol Mutagen 35: 222–233PubMedCrossRefGoogle Scholar
  57. 57.
    Randerath K, Reddy MV, Gupta RC (1981) 32P-labeling test for DNA damage. Proc Natl Acad Sci USA 78: 6126–6129PubMedCrossRefGoogle Scholar
  58. 58.
    Gupta RC, Reddy MV, Randerath K (1982) 32P-postlabeling analysis of non-radioactive aromatic carcinogen-DNA adducts. Carcinogenesis 3: 1081–1092PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta RC (1985) Enhanced sensitivity of 32P-postlabeling analysis of aromatic carcinogen:DNA adducts. Cancer Res. 45: 5656–5662PubMedGoogle Scholar
  60. 60.
    Phillips DH, Arlt VM(2007) The 32P-postlabeling assay for DNA adducts. Nat Protoc 2: 2772–2781PubMedCrossRefGoogle Scholar
  61. 61.
    Phillips DH, Castegnaro M (1999) Standardization and validation of DNA adduct postlabelling methods: Report of interlaboratory trials and production of recommended protocols. Mutagenesis 14: 301–315PubMedCrossRefGoogle Scholar
  62. 62.
    Phillips DH (1997) Detection of DNA modifications by the 32P-postlabelling assay. Mutat Res 378: 1–12PubMedGoogle Scholar
  63. 63.
    Beach AC, Gupta RC (1992) Human biomonitoring and the 32P-postlabeling assay. Carcinogenesis 13: 1053–1074PubMedCrossRefGoogle Scholar
  64. 64.
    Schmitz OJ, Worth CC, Stach D, Wiessler M (2002) Capillary electrophoresis analysis of DNA adducts as biomarkers for carcinogenesis. Angew Chem Int Ed 41: 445–448CrossRefGoogle Scholar
  65. 65.
    Wirtz M, Schumann CA, Schellentrager M, Gab S, Vom Brocke J, Podeschwa MA, Altenbach HJ, Oscier D, Schmitz OJ (2005) Capillary electrophoresis-laser induced fluorescence analysis of endogenous damage in mitochondrial and genomic DNA. Electrophoresis 26: 2599–2607PubMedCrossRefGoogle Scholar
  66. 66.
    Stach D, Schmitz OJ, Stilgenbauer S, Benner A, Dohner H, Wiessler M, Lyko F (2003) Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res 31: E2PubMedCrossRefGoogle Scholar
  67. 67.
    Farmer PB, Brown K, Tompkins E, Emms VL, Jones DJ, Singh R, Phillips DH (2005) DNA adducts: Mass spectrometry methods and future prospects. Toxicol Appl Pharmacol 207: 293–301PubMedCrossRefGoogle Scholar
  68. 68.
    Singh R, Farmer PB (2006) Liquid chromatography-electrospray ionization-mass spectrometry: The future of DNA adduct detection. Carcinogenesis 27: 178–196PubMedCrossRefGoogle Scholar
  69. 69.
    Kanaly RA, Hanaoka T, Sugimura H, Toda H, Matsui S, Matsuda T (2006) Development of the adductome approach to detect DNA damage in humans. Antioxid Redox Signal 8: 993–1001PubMedCrossRefGoogle Scholar
  70. 70.
    White IN, Brown K (2004) Techniques: The application of accelerator mass spectrometry to pharmacology and toxicology. Trend Pharmacol Sci 25: 442–447CrossRefGoogle Scholar
  71. 71.
    Dingley KH, Curtis KD, Nowell S, Felton JS, Lang NP, Turteltaub KW (1999) DNA and protein adduct formation in the colon and blood of humans after exposure to a dietary-relevant dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Epidemiol Biomarkers Prev 8: 507–512PubMedGoogle Scholar
  72. 72.
    Brown K, Tompkins EM, Boocock DJ, Martin EA, Farmer PB, Turteltaub KW, Ubick E, Hemingway D, Horner-Glister E, White IN (2007) Tamoxifen forms DNA adducts in human colon after administration of a single [14C]-labeled therapeutic dose. Cancer Res 67: 6995–7002PubMedCrossRefGoogle Scholar
  73. 73.
    Weston A (1993) Physical methods for the detection of carcinogen-DNA adducts in humans. Mutat Res 288: 19–29PubMedGoogle Scholar
  74. 74.
    ESCODD (2003) Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 34: 1089–1099CrossRefGoogle Scholar
  75. 75.
    Poirier MC (1994) Human exposure monitoring, dosimetry, and cancer risk assessment: The use of antisera specific for carcinogen-DNA adducts and carcinogen-modified DNA. Drug Metab Rev 26: 87–109PubMedCrossRefGoogle Scholar
  76. 76.
    Santella RM (1999) Immunological methods for detection of carcinogen-DNA damage in humans. Cancer Epidemiol Biomarkers Prev 8: 733–739PubMedGoogle Scholar
  77. 77.
    Divi RL, Beland FA, Fu PP, Von Tungeln LS, Schoket B, Camara JE, Ghei M, Rothman N, Sinha R, Poirier MC (2002) Highly sensitive chemiluminescence immunoassay for benzo[a]pyrene-DNA adducts: Validation by comparison with other methods, and use in human biomonitoring. Carcinogenesis 23: 2043–2049PubMedCrossRefGoogle Scholar
  78. 78.
    van Gijssel HE, Divi RL, Olivero OA, Roth MJ, Wang GQ, Dawsey SM, Albert PS, Qiao YL, Taylor PR, Dong ZW et al (2002) Semiquantitation of polycyclic aromatic hydrocarbon-DNA adducts in human esophagus by immunohistochemistry and the automated cellular imaging system. Cancer Epidemiol Biomarkers Prev 11: 1622–1629PubMedGoogle Scholar
  79. 79.
    Pratt MM, Sirajuddin P, Poirier MC, Schiffman M, Glass AG, Scott DR, Rush BB, Olivero OA, Castle PE (2007) Polycyclic aromatic hydrocarbon-DNA adducts in cervix of women infected with carcinogenic human papillomavirus types: An immunohistochemistry study. Mutat Res 624: 114–123PubMedGoogle Scholar
  80. 80.
    van Steeg H, Klein H, Beems RB, van Kreijl CF (1998) Use of DNA repair-deficient XPA transgenic mice in short-term carcinogenicity testing. Toxicol Pathol 26: 742–749PubMedCrossRefGoogle Scholar
  81. 81.
    Marshall CJ, Vousden KH, Phillips DH (1984) Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo[a]pyrene diol-epoxide. Nature 310: 586–589PubMedCrossRefGoogle Scholar
  82. 82.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat 28: 622–629PubMedCrossRefGoogle Scholar
  83. 83.
    Besaratinia A, Pfeifer GP (2006) Investigating human cancer etiology by DNA lesion footprinting and mutagenicity analysis. Carcinogenesis 27: 1526–1537PubMedCrossRefGoogle Scholar
  84. 84.
    Denissenko MF, Pao A, Tang M, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274: 430–432PubMedCrossRefGoogle Scholar
  85. 85.
    Dumaz N, Drougard C, Sarasin A, Daya-Grosjean L (1993) Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient Xeroderma pigmentosum patients. Proc Natl Acad Sci USA 90: 10529–10533PubMedCrossRefGoogle Scholar
  86. 86.
    Phillips DH (1996) DNA adducts in human tissues: Biomarkers of exposure to carcinogens in tobacco smoke. Environ Health Perspect 104 Suppl. 3: 453–458PubMedCrossRefGoogle Scholar
  87. 87.
    Phillips DH (2005) Macromolecular adducts as biomarkers of human exposure to polycyclic aromatic hydrocarbons. In: A Luch (ed.): The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press, London, 137–169Google Scholar
  88. 88.
    Mumford JL, Lee X, Lewtas J, Young TL, Santella RM (1993) DNA adducts as biomarkers for assessing exposure to polycyclic aromatic hydrocarbons in tissues from Xuan Wei women with high exposure to coal combustion emissions and high lung cancer mortality. Environ Health Perspect 99: 83–87PubMedCrossRefGoogle Scholar
  89. 89.
    van Gijssel HE, Schild LJ, Watt DL, Roth MJ, Wang GQ, Dawsey SM, Albert PS, Qiao YL, Taylor PR, Dong ZW, Poirier MC (2004) Polycyclic aromatic hydrocarbon-DNA adducts determined by semiquantitative immunohistochemistry in human esophageal biopsies taken in 1985. Mutat Res 547: 55–62PubMedGoogle Scholar
  90. 90.
    Arlt VM, Stiborova M, Schmeiser HH (2002) Aristolochic acid as a probable human cancer hazard in herbal remedies: A review. Mutagenesis 17: 265–277PubMedCrossRefGoogle Scholar
  91. 91.
    Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342: 1686–1692PubMedCrossRefGoogle Scholar
  92. 92.
    Arlt VM, Ferluga D, Stiborova M, Pfohl-Leszkowicz A, Vukelic M, Ceovic S, Schmeiser HH, Cosyns JP (2002) Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer? Int J Cancer 101: 500–502PubMedCrossRefGoogle Scholar
  93. 93.
    Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z et al (2007) Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104: 12129–12134PubMedCrossRefGoogle Scholar
  94. 94.
    Arlt VM, Stiborova M, vom Brocke J, Simoes ML, Lord GM, Nortier JL, Hollstein M, Phillips DH, Schmeiser HH (2007) Aristolochic acid mutagenesis: Molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis 28: 2253–2261PubMedCrossRefGoogle Scholar
  95. 95.
    Phillips DH (2002) Smoking-related DNA and protein adducts in human tissues. Carcinogenesis 23: 1979–2004PubMedCrossRefGoogle Scholar
  96. 96.
    Mollerup S, Ryberg D, Hewer A, Phillips DH, Haugen A (1999) Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res 59: 3317–3320PubMedGoogle Scholar
  97. 97.
    Perera FP (2000) Molecular epidemiology: On the path to prevention? J Natl Cancer Inst 92: 602–612PubMedCrossRefGoogle Scholar
  98. 98.
    Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE, Wogan GN, Groopman JD (1994) A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China. Cancer Epidemiol Biomarkers Prev 3: 3–10PubMedGoogle Scholar
  99. 99.
    Tang D, Phillips DH, Stampfer M, Mooney LA, Hsu Y, Cho S, Tsai WY, Ma J, Cole KJ, She MN, Perera FP (2001) Association between carcinogen-DNA adducts in white blood cells and lung cancer risk in the physicians health study. Cancer Res 61: 6708–6712PubMedGoogle Scholar
  100. 100.
    Peluso M, Munnia A, Hoek G, Krzyzanowski M,Veglia F, Airoldi L, Autrup H, Dunning A, Garte S, Hainaut P et al (2005) DNA adducts and lung cancer risk: A prospective study. Cancer Res 65: 8042–8048PubMedGoogle Scholar
  101. 101.
    Bak H, Autrup H, Thomsen BL, Tjonneland A, Overvad K, Vogel U, Raaschou-Nielsen O, Loft S (2006) Bulky DNA adducts as risk indicator of lung cancer in a Danish case-cohort study. Int J Cancer 118: 1618–1622PubMedCrossRefGoogle Scholar
  102. 102.
    Anon (1999) Consensus report. In: DB McGregor, JM Rice, S Venitt (eds): The Use of Short-and Medium-Term Tests for Carcinogens and Data on Genetic Effects in Carcinogenic Hazard Evaluation. IARC, Lyon, 1–18Google Scholar
  103. 103.
    Shelby MD, Purchase IFH (1981) Assay systems and criteria for their comparisons. In: FJ de Serres, J Ashby (eds): Evaluation of Short-term Tests for Carcinogens. Elsevier/North Holland, New York, 16–20Google Scholar
  104. 104.
    Phillips DH (2008) Biomarkers of exposure: Adducts. In: CP Wild, P Vineis, S Garte (eds): Molecular Epidemiology of Chronic Diseases. Wiley, New York, 111–125CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • David H. Phillips
    • 1
  • Volker M. Arlt
    • 1
  1. 1.Institute of Cancer ResearchSuttonUK

Personalised recommendations