Skip to main content

The role of biotransformation and bioactivation in toxicity

  • Chapter
Molecular, Clinical and Environmental Toxicology

Part of the book series: Experientia Supplementum ((EXS,volume 99))

Abstract

Biotransformation is essential to convert lipophilic chemicals to water-soluble and readily excretable metabolites. Formally, biotransformation reactions are classified into phase I and phase II reactions. Phase I reactions represent the introduction of functional groups, whereas phase II reactions are conjugations of such functional groups with endogenous, polar products. Biotransformation also plays an essential role in the toxicity of many chemicals due to the metabolic formation of toxic metabolites. These may be classified as stable but toxic products, reactive electrophiles, radicals, and reactive oxygen metabolites. The interaction of toxic products formed by biotransformation reactions with cellular macromolecules initiates the sequences resulting in cellular damage, cell death and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medinsky M, Valentine JL (2001) Toxicokinetics. In: CD Klaassen (ed.): Casarett and Doull’s Toxicology. The Basic Science of Poisons. McGraw-Hill, New York, 225–237

    Google Scholar 

  2. May DG (1994) Genetic differences in drug disposition. J Clin Pharmacol 34: 881–897

    PubMed  CAS  Google Scholar 

  3. Pang KS, Xu X, St-Pierre MV (1992) Determinants of metabolite disposition. Annu Rev Pharmacol Toxicol 32: 623–669

    Article  PubMed  CAS  Google Scholar 

  4. Filser JG (2008) Toxicokinetics. In: H Greim, R Snyder (eds): Toxicology and Risk Assessment. John Wiley & Sons, Hoboken, 19–49

    Chapter  Google Scholar 

  5. Gibson GG, Skett P (2001) Introduction to Drug Metabolism. Nelson Thornes, Cheltenham

    Google Scholar 

  6. Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8: E101–111

    Article  PubMed  CAS  Google Scholar 

  7. Buters JTM (2008) Phase I metabolism. In: H Greim, R Snyder (eds): Toxicology and Risk Assessment. John Wiley & Sons, Hoboken, 49–74

    Google Scholar 

  8. Anders MW (1985) Bioactivation of Foreign Compounds. Academic Press, New York

    Google Scholar 

  9. Anders MW (1988) Bioactivation mechanisms and hepatocellular damage. In: IM Arias, WB Jakoby, H Popper, D Schachter, DA Shafritz (eds): The Liver: Biology and Pathology, 2nd edition. Raven Press, New York, 389–400

    Google Scholar 

  10. DeBethizy JD, Hayes JR (1994) Metabolism, a determinant of toxicity. In: AW Hayes (ed.): Principles and Methods of Toxicology. Raven Press, New York, 59–100

    Google Scholar 

  11. Guengerich FP (1991) Reactions and significance of cytochrome P450 enzymes. J Biol Chem 266: 10019–10022

    PubMed  CAS  Google Scholar 

  12. Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21: 70–83

    Article  PubMed  CAS  Google Scholar 

  13. Guengerich FP (2007) Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J Biochem Mol Toxicol 21: 163–168

    Article  PubMed  CAS  Google Scholar 

  14. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43: 149–173

    Article  PubMed  CAS  Google Scholar 

  15. Guengerich FP, Liebler DC (1985) Enzymatic activation of chemicals to toxic metabolites. CRC Crit Rev Toxicol 14: 259–307

    Article  CAS  Google Scholar 

  16. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14: 611–650

    Article  PubMed  CAS  Google Scholar 

  17. Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29: 413–580

    Article  PubMed  CAS  Google Scholar 

  18. Brown CM, Reisfeld B, Mayeno AN (2008) Cytochromes P450: A structure-based summary of biotransformations using representative substrates. Drug Metab Rev 40: 1–100

    Article  PubMed  CAS  Google Scholar 

  19. Cashman JR (2003) The role of flavin-containing monooxygenases in drug metabolism and development. Curr Opin Drug Discov Dev 6: 486–493

    CAS  Google Scholar 

  20. Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46: 65–100

    Article  PubMed  CAS  Google Scholar 

  21. Cashman JR (2005) Some distinctions between flavin-containing and cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338: 599–604

    Article  PubMed  CAS  Google Scholar 

  22. Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: Structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106: 357–387

    Article  PubMed  CAS  Google Scholar 

  23. Vogel C (2000) Prostaglandin H synthases and their importance in chemical toxicity. Curr Drug Metab 1: 391–404

    Article  PubMed  CAS  Google Scholar 

  24. Smith BJ, Curtis JF, Eling TE (1991) Bioactivation of xenobiotics by prostaglandin H synthase. Chem Biol Interact 79: 245–264

    Article  PubMed  CAS  Google Scholar 

  25. Kettle AJ, Winterbourn CC (1992) Oxidation of hydrochinone by myeloperoxidase. J Biol Chem 267: 8319–8324

    PubMed  CAS  Google Scholar 

  26. Arand M, Cronin A, Oesch F, Mowbray SL, Jones TA (2003) The telltale structures of epoxide hydrolases. Drug Metab Rev 35: 365–383

    Article  PubMed  CAS  Google Scholar 

  27. Arand M, Cronin A, Adamska M, Oesch F (2005) Epoxide hydrolases: Structure, function, mechanism, and assay. Methods Enzymol 400: 569–588

    Article  PubMed  CAS  Google Scholar 

  28. Sheweita SA, Tilmisany AK (2003) Cancer and phase II drug-metabolizing enzymes. Curr Drug Metab 4: 45–58

    Article  PubMed  CAS  Google Scholar 

  29. Tukey RH, Strassburg CP (2000) Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40: 581–616

    Article  PubMed  CAS  Google Scholar 

  30. Burchell B, Coughtrie WH (1989) UPD-glucuronosyltransferases. Pharmacol Ther 43: 261–289

    Article  PubMed  CAS  Google Scholar 

  31. Tephly TR, Burchell B (1990) UDP-glucuronosyltransferases: A family of detoxifying enzymes. Trends Pharmacol Sci 11: 276–279

    Article  PubMed  CAS  Google Scholar 

  32. Duffel MW, Marshal AD, McPhie P, Sharma V, Jakoby WB (2001) Enzymatic aspects of the phenol (aryl) sulfotransferases. Drug Metab Rev 33: 369–395

    Article  PubMed  CAS  Google Scholar 

  33. Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, McManus ME (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90: 5–22

    Article  PubMed  CAS  Google Scholar 

  34. Knights KM, Sykes MJ, Miners JO (2007) Amino acid conjugation: Contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Exp Opin Drug Metab Toxicol 3: 159–168

    Article  CAS  Google Scholar 

  35. Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129: 171–193

    Article  PubMed  CAS  Google Scholar 

  36. Bock KW, Bock-Hennig BS, Fischer G, Ullrich D (1984) Role of glucuronidation and sulfation in the control of reactive metabolites. In: H Greim, R Jung, M Kramer, H Marquardt, F Oesch (eds): Biochemical Basis of Chemical Carcinogenesis. Raven Press, New York, 13–22

    Google Scholar 

  37. Mulder GJ (1981) Sulfation of Drugs and Related Compounds. CRC Press, Boca Raton

    Google Scholar 

  38. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45: 51–88

    Article  PubMed  CAS  Google Scholar 

  39. Krynetski EY, Evans WE (1999) Pharmacogenetics as a molecular basis for individualized drug therapy: The thiopurine S-methyltransferase paradigm. Pharm Res 16: 342–349

    Article  PubMed  CAS  Google Scholar 

  40. Evans DA (1989) N-acetyltransferase. Pharmacol Ther 42: 157–234

    Article  PubMed  CAS  Google Scholar 

  41. Meisel P (2002) Arylamine N-acetyltransferases and drug response. Pharmacogenomics 3: 349–366

    Article  PubMed  CAS  Google Scholar 

  42. Arias IM, Jakoby WB (1976) Glutathione: Metabolism and Function. Raven Press, New York

    Google Scholar 

  43. Guengerich FP (2003) Cytochrome P450 oxidations in the generation of reactive electrophiles: The role of biotransformation and bioactivation in toxicity 85 Epoxidation and related reactions. Arch Biochem Biophys 409: 59–71

    Article  PubMed  Google Scholar 

  44. Ketterer B, Meyer DJ, Clark AG (1988) Soluble glutathione transferase isoenzymes. In: H Sies, B Ketterer (eds): Glutathione Conjugation: Mechanisms and Biological Significance. Academic Press, New York, 73–135

    Google Scholar 

  45. Morgenstern R, Lundqvist G, Andersson G, Balk L, DePierre JW (1984) The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem Pharmacol 33: 3609–3614

    Article  PubMed  CAS  Google Scholar 

  46. Caldwell J, Jakoby WB (1983) Biological Basis of Detoxification. Academic Press, New York

    Google Scholar 

  47. Anders MW (2004) Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab Rev 36: 583–594

    Article  PubMed  CAS  Google Scholar 

  48. Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: Molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31: 55–138

    Article  PubMed  CAS  Google Scholar 

  49. Genter StClair MB, Amarnath V, Moody MA, Anthony DC, Anderson CW, Graham DG (1988) Pyrrole oxidation and protein cross-linking as necessary steps in the development of g-diketone neuropathy. Chem Res Toxicol 1: 179–185

    Article  CAS  Google Scholar 

  50. Liebler DC, Guengerich FP (1983) Olefin oxidation by cytochrome P450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-1-phenyl-1-butene. Biochemistry 22: 5482–5489

    Article  PubMed  CAS  Google Scholar 

  51. Pohl LR, Branchflower RV, Highet RJ, Martin JL, Nunn DS, Monks TJ, George JW, Hinson JA (1981) The formation of diglutathionyl dithiocarbonate as a metabolite of chloroform, bromotrichloromethane, and carbon tetrachloride. Drug Metab Dispos 9: 334–339

    PubMed  CAS  Google Scholar 

  52. Anders MW, Dekant W (1994) Conjugation-Dependent Carcinogenicity and Toxicity of Foreign Compounds. Academic Press, New York

    Google Scholar 

  53. Anders MW, Dekant W, Vamvakas S (1992) Glutathione-dependent toxicity. Xenobiotica 22: 1135–1145

    Article  PubMed  CAS  Google Scholar 

  54. Dekant W, Vamvakas S, Anders MW (1992) The kidney as a target organ for xenobiotics bioactivated by glutathione conjugation. In: W Dekant, HG Neumann (eds): Tissue Specific Toxicity: Biochemical Mechanisms. Academic Press, New York, 163–194

    Google Scholar 

  55. Monks TJ, Anders MW, Dekant W, Stevens JL, Lau SS, van Bladeren PJ (1990) Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol 106: 1–19

    Article  PubMed  CAS  Google Scholar 

  56. Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radicals in toxicology. Toxicol Appl Pharmacol 120: 168–178

    Article  PubMed  CAS  Google Scholar 

  57. Goldstein BD, Czerniecki B, Witz G (1989) The role of free radicals in tumor promotion. Environ Health Perspect 81: 55–57

    Article  PubMed  CAS  Google Scholar 

  58. Goldstein BD, Witz G. (1990) Free radicals and carcinogenesis. Free Radic Res Commun 11: 3–10

    Article  PubMed  CAS  Google Scholar 

  59. Kehrer JP, Mossman BT, Sevanian A, Trush MA, Smith MT (1988) Free radical mechanisms in chemical pathogenesis. Toxicol Appl Pharmacol 95: 349–362

    Article  PubMed  CAS  Google Scholar 

  60. Cerutti PA, Trump BF (1991) Inflammation and oxidative stress in carcinogenesis. Cancer Cell 3: 1–7

    CAS  Google Scholar 

  61. Chacon E, Acosta D (1991) Mitochondrial regulation of superoxide by Ca2+: An alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol Appl Pharmacol 107: 117–128

    Article  PubMed  CAS  Google Scholar 

  62. Burdon RH, Gill V, Rice-Evans C (1990) Oxidative stress and tumour cell proliferation. Free Radic Res Commun 11: 65–76

    Article  PubMed  CAS  Google Scholar 

  63. Pero RW, Roush GC, Markowitz MM, Miller DG (1990) Oxidative stress, DNA repair, and cancer susceptibility. Cancer Detect Prev 14: 551–561

    Google Scholar 

  64. Jakoby WB, Ziegler DM (1990) The enzymes of detoxication. J Biol Chem 265: 20715–20719

    PubMed  CAS  Google Scholar 

  65. Sies H (1989) Zur Biochemie der Thiolgruppe: Bedeutung des Glutathions. Naturwissenschaften 76: 57–64

    Article  PubMed  CAS  Google Scholar 

  66. Ziegler DM (1980) Microsomal flavin-containing monooxygenase: Oxygenation of nucleophilic nitrogen and sulfur compounds. In: WB Jacoby (ed.): Enzymic Basis of Detoxification, vol 1. Academic Press, New York, 201–227

    Google Scholar 

  67. Boyland E, Chasseaud LF (1969) Role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol 32: 173–177

    PubMed  CAS  Google Scholar 

  68. James RC, Harbison RD. (1982) Hepatic glutathione and hepatotoxicity. Biochem. Pharmacol. 31: 1829–1835

    Article  PubMed  CAS  Google Scholar 

  69. Chung FL, Pan J, Choudhury S, Roy R, Hu W, Tang MS (2003) Formation of trans-4-hydroxy-2-nonenal-and other enal-derived cyclic DNA adducts from omega-3 and omega-6 polyunsaturated fatty acids and their roles in DNA repair and human p53 gene mutation. Mutat Res 531: 25–36

    PubMed  CAS  Google Scholar 

  70. West JD, Marnett LJ (2006) Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Toxicol 19: 173–194

    Article  PubMed  CAS  Google Scholar 

  71. McLellan LI, Wolf CR, Hayes JD (1989) Human microsomal glutathione S-transferase. Its involvement in the conjugation of hexachlorobuta-1,3-diene with glutathione. Biochem J 258: 87–93

    PubMed  CAS  Google Scholar 

  72. Hinson JA, Roberts DW (1992) Role of covalent and noncovalent interactions in cell toxicity: Effects on proteins. Annu Rev Pharmacol Toxicol 32: 471–510

    Article  PubMed  CAS  Google Scholar 

  73. Nelson SD, Pearson PG (1990) Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol 30: 169–195

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Dekant, W. (2009). The role of biotransformation and bioactivation in toxicity. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 99. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8336-7_3

Download citation

Publish with us

Policies and ethics