Skip to main content

Toxicogenomics: transcription profiling for toxicology assessment

  • Chapter
Molecular, Clinical and Environmental Toxicology

Part of the book series: Experientia Supplementum ((EXS,volume 99))

Abstract

Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamadeh HK, Amin RP, Paules RS, Afshari CA (2002) An overview of toxicogenomics. Curr Issues Mol Biol 4: 45–56

    PubMed  CAS  Google Scholar 

  2. Tennant RW (2002) The National Center for Toxicogenomics: Using new technologies to inform mechanistic toxicology. Environ Health Perspect 110: A8–10

    PubMed  CAS  Google Scholar 

  3. Waters M, Yauk C (2007) Consensus recommendations to promote and advance predictive systems toxicology and toxicogenomics. Environ Mol Mutagen 48: 400–403

    PubMed  CAS  Google Scholar 

  4. Dobbin K, Simon R (2005) Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6: 27–38

    PubMed  Google Scholar 

  5. Dobbin KK, Simon RM (2007) Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 8: 101–117

    PubMed  Google Scholar 

  6. Simon R (2008) Microarray-based expression profiling and informatics. Curr Opin Biotechnol 19: 26–29

    PubMed  CAS  Google Scholar 

  7. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8: 118–127

    PubMed  Google Scholar 

  8. Dalma-Weiszhausz DD, Warrington J, Tanimoto EY, Miyada CG (2006) The affymetrix GeneChip platform: An overview. Methods Enzymol 410: 3–28

    PubMed  CAS  Google Scholar 

  9. Wolber PK, Collins PJ, Lucas AB, De Witte A, Shannon KW (2006) The Agilent in situ-synthesized microarray platform. Methods Enzymol 410: 28–57

    PubMed  CAS  Google Scholar 

  10. Pedotti P, ’tHoen PA, Vreugdenhil E, Schenk GJ,Vossen RH, Ariyurek Y, de Hollander M, Kuiper R, van Ommen GJ, den Dunnen JT et al (2008) Can subtle changes in gene expression be consistently detected with different microarray platforms? BMC Genomics 9: 124

    PubMed  Google Scholar 

  11. Jain AN, Tokuyasu TA, Snijders AM, Segraves R, Albertson DG, Pinkel D (2002) Fully automatic quantification of microarray image data. Genome Res 12: 325–332

    PubMed  CAS  Google Scholar 

  12. Yang YH, Buckley MJ, Speed TP (2001) Analysis of cDNA microarray images. Brief Bioinform 2: 341–349

    PubMed  CAS  Google Scholar 

  13. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32 Suppl: 496–501

    Google Scholar 

  14. Baggerly KA, Coombes KR, Hess KR, Stivers DN, Abruzzo LV, Zhang W (2001) Identifying differentially expressed genes in cDNA microarray experiments. J Comput Biol 8: 639–659

    PubMed  CAS  Google Scholar 

  15. Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7: 819–837

    PubMed  CAS  Google Scholar 

  16. Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2: 183–201

    PubMed  Google Scholar 

  17. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509–519

    PubMed  CAS  Google Scholar 

  18. Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P (2001) Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem 276: 19937–19944

    PubMed  CAS  Google Scholar 

  19. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375

    PubMed  CAS  Google Scholar 

  20. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121

    PubMed  CAS  Google Scholar 

  21. Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2: 418–427

    PubMed  CAS  Google Scholar 

  22. Valafar F (2002) Pattern recognition techniques in microarray data analysis: A survey. Ann NY Acad Sci 980: 41–64

    PubMed  CAS  Google Scholar 

  23. Chou JW, Zhou T, Kaufmann WK, Paules RS, Bushel PR (2007) Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes. BMC Bioinformatics 8: 427

    PubMed  Google Scholar 

  24. Zhou T, Chou J, Mullen TE, Elkon R, Zhou Y, Simpson DA, Bushel PR, Paules RS, Lobenhofer EK, Hurban P, Kaufmann WK (2007) Identification of primary transcriptional regulation of cell cycle-regulated genes upon DNA damage. Cell Cycle 6: 972–981

    PubMed  CAS  Google Scholar 

  25. Zhou T, Chou JW, Simpson DA, Zhou Y, Mullen TE, Medeiros M, Bushel PR, Paules RS, Yang X, Hurban P et al (2006) Profiles of global gene expression in ionizing-radiation-damaged human diploid fibroblasts reveal synchronization behind the G1 checkpoint in a G0-like state of quiescence. Environ Health Perspect 114: 553–559

    PubMed  CAS  Google Scholar 

  26. Sharan R, Maron-Katz A, Shamir R (2003) CLICK and Expander: A system for clustering and visualizing gene expression data. Bioinformatics 19: 1787–1799

    PubMed  CAS  Google Scholar 

  27. Sharan R, Shamir R (2000) CLICK: A clustering algorithm with applications to gene expression analysis. Proc Int Conf Intell Syst Mol Biol 8: 307–316

    PubMed  CAS  Google Scholar 

  28. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5: 276–287

    PubMed  CAS  Google Scholar 

  29. Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y (2003) Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13: 773–780

    PubMed  CAS  Google Scholar 

  30. Mattingly CJ, Rosenstein MC, Davis AP, Colby GT, Forrest JN Jr, Boyer JL (2006) The comparative toxicogenomics database: A cross-species resource for building chemical-gene interaction networks. Toxicol Sci 92: 587–595

    PubMed  CAS  Google Scholar 

  31. Hayes KR, Vollrath AL, Zastrow GM, McMillan BJ, Craven M, Jovanovich S, Rank DR, Penn S, Walisser JA, Reddy JK et al (2005) EDGE: A centralized resource for the comparison, analysis, and distribution of toxicogenomic information. Mol Pharmacol 67: 1360–1368

    PubMed  CAS  Google Scholar 

  32. Waters M, Boorman G, Bushel P, Cunningham M, Irwin R, Merrick A, Olden K, Paules R, Selkirk J, Stasiewicz S et al (2003) Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenomics 111: 15–28

    PubMed  CAS  Google Scholar 

  33. Waters M, Stasiewicz S, Merrick BA, Tomer K, Bushel P, Paules R, Stegman N, Nehls G, Yost KJ, Johnson CH et al (2008) CEBS-Chemical Effects in Biological Systems: A public data repository integrating study design and toxicity data with microarray and proteomics data. Nucleic Acids Res 36: 892–900

    Google Scholar 

  34. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M et al (2007) ArrayExpress-A public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35: D747–750

    PubMed  CAS  Google Scholar 

  35. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: Mining tens of millions of expression profiles-Database and tools update. Nucleic Acids Res 35: D760–765

    PubMed  CAS  Google Scholar 

  36. Gatzidou ET, Zira AN, Theocharis SE (2007) Toxicogenomics: A pivotal piece in the puzzle of toxicological research. J Appl Toxicol 27: 302–309

    PubMed  CAS  Google Scholar 

  37. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4: R70

    PubMed  Google Scholar 

  38. Zhou T, Chou J, Zhou Y, Simpson DA, Cao F, Bushel PR, Paules RS, Kaufmann WK (2007) Ataxia telangiectasia-mutated dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts. Mol Cancer Res 5: 813–822

    PubMed  CAS  Google Scholar 

  39. Heinloth AN, Irwin RD, Boorman GA, Nettesheim P, Fannin RD, Sieber SO, Snell ML, Tucker CJ, Li L, Travlos GS et al (2004) Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicol Sci 80: 193–202

    PubMed  CAS  Google Scholar 

  40. Maggioli J, Hoover A, Weng L (2006) Toxicogenomic analysis methods for predictive toxicology. J Pharmacol Toxicol Methods 53: 31–37

    PubMed  CAS  Google Scholar 

  41. Feron VJ, Groten JP (2002) Toxicological evaluation of chemical mixtures. Food Chem Toxicol 40: 825–839

    PubMed  CAS  Google Scholar 

  42. Mendrick DL (2008) Genomic and genetic biomarkers of toxicity. Toxicology 245: 175–181

    PubMed  CAS  Google Scholar 

  43. Bushel PR, Heinloth AN, Li J, Huang L, Chou JW, Boorman GA, Malarkey DE, Houle CD, Ward SM, Wilson RE et al (2007) Blood gene expression signatures predict exposure levels. Proc Natl Acad Sci USA 104: 18211–18216

    PubMed  CAS  Google Scholar 

  44. Newton RK, Aardema M, Aubrecht J (2004) The utility of DNA microarrays for characterizing genotoxicity. Environ Health Perspect 112: 420–422

    PubMed  CAS  Google Scholar 

  45. Kim JY, Kwon J, Kim JE, Koh WS, Chung MK, Yoon S, Song CW, Lee M (2005) Identification of potential biomarkers of genotoxicity and carcinogenicity in L5178Y mouse lymphoma cells by cDNA microarray analysis. Environ Mol Mutagen 45: 80–89

    PubMed  CAS  Google Scholar 

  46. Lee M, Kwon J, Kim SN, Kim JE, Koh WS, Kim EJ, Chung MK, Han SS, Song CW (2003) cDNA microarray gene expression profiling of hydroxyurea, paclitaxel, and p-anisidine, genotoxic compounds with differing tumorigenicity results. Environ Mol Mutagen 42: 91–97

    PubMed  CAS  Google Scholar 

  47. Seidel SD, Kan HL, Stott WT, Schisler MR, Gollapudi BB (2003) Identification of transcriptome profiles for the DNA-damaging agents bleomycin and hydrogen peroxide in L5178Y mouse lymphoma cells. Environ Mol Mutagen 42: 19–25

    PubMed  CAS  Google Scholar 

  48. Thomas RS, O’Connell TM, Pluta L, Wolfinger RD, Yang L, Page TJ (2007) A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays. Toxicol Sci 96: 40–46

    PubMed  CAS  Google Scholar 

  49. Thomas RS, Pluta L, Yang L, Halsey TA (2007) Application of genomic biomarkers to predict increased lung tumor incidence in 2-year rodent cancer bioassays. Toxicol Sci 97: 55–64

    PubMed  CAS  Google Scholar 

  50. Nakayama K, Kawano Y, Kawakami Y, Moriwaki N, Sekijima M, Otsuka M, Yakabe Y, Miyaura H, Saito K, Sumida K, Shirai T (2006) Differences in gene expression profiles in the liver between carcinogenic and non-carcinogenic isomers of compounds given to rats in a 28-day repeat-dose toxicity study. Toxicol Appl Pharmacol 217: 299–307

    PubMed  CAS  Google Scholar 

  51. Sumida K, Saito K, Oeda K, Yakabe Y, Otsuka M, Matsumoto H, Sekijima M, Nakayama K, Kawano Y, Shirai T (2007) A comparative study of gene expression profiles in rat liver after administration of a-hexachlorocyclohexane and lindane. J Toxicol Sci 32: 261–288

    PubMed  CAS  Google Scholar 

  52. Tsujimura K, Asamoto M, Suzuki S, Hokaiwado N, Ogawa K, Shirai T (2006) Prediction of carcinogenic potential by a toxicogenomic approach using rat hepatoma cells. Cancer Sci 97: 1002–1010

    PubMed  CAS  Google Scholar 

  53. Chen T, Guo L, Zhang L, Shi L, Fang H, Sun Y, Fuscoe JC, Mei N (2006) Gene expression profiles distinguish the carcinogenic effects of aristolochic acid in target (kidney) and non-target (liver) tissues in rats. BMC Bioinformatics 7 Suppl 2: S20

    PubMed  Google Scholar 

  54. Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99: 90–100

    PubMed  CAS  Google Scholar 

  55. Fielden MR, Nie A, McMillian M, Elangbam CS, Trela BA, Yang Y, Dunn RT 2nd, Dragan Y, Fransson-Stehen R, Bogdanffy M et al (2008) Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol Sci 103: 28–34

    PubMed  CAS  Google Scholar 

  56. Jaeschke H (2008) Toxic responses of the liver. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 557–582

    Google Scholar 

  57. Minami K, Saito T, Narahara M, Tomita H, Kato H, Sugiyama H, Katoh M, Nakajima M, Yokoi T (2005) Relationship between hepatic gene expression profiles and hepatotoxicity in five typical hepatotoxicant-administered rats. Toxicol Sci 87: 296–305

    PubMed  CAS  Google Scholar 

  58. Fukushima T, Kikkawa R, Hamada Y, Horii I (2006) Genomic cluster and network analysis for predictive screening for hepatotoxicity. J Toxicol Sci 31: 419–432

    PubMed  CAS  Google Scholar 

  59. Powell CL, Kosyk O, Ross PK, Schoonhoven R, Boysen G, Swenberg JA, Heinloth AN, Boorman GA, Cunningham ML, Paules RS, Rusyn I (2006) Phenotypic anchoring of acetaminopheninduced oxidative stress with gene expression profiles in rat liver. Toxicol Sci 93: 213–222

    PubMed  CAS  Google Scholar 

  60. Spicker JS, Pedersen HT, Nielsen HB, Brunak S (2007) Analysis of cell death inducing compounds. Arch Toxicol 81: 803–811

    PubMed  CAS  Google Scholar 

  61. Guo L, Zhang L, Sun Y, Muskhelishvili L, Blann E, Dial S, Shi L, Schroth G, Dragan YP (2006) Differences in hepatotoxicity and gene expression profiles by anti-diabetic PPAR g agonists on rat primary hepatocytes and human HepG2 cells. Mol Divers 10: 349–360

    PubMed  CAS  Google Scholar 

  62. Jung JW, Park JS, Hwang JW, Kang KS, Lee YS, Song BS, Lee GJ, Yeo CD, Kang JS, Lee WS et al (2004) Gene expression analysis of peroxisome proliferators-and phenytoin-induced hepatotoxicity using cDNA microarray. J Vet Med Sci 66: 1329–1333

    PubMed  CAS  Google Scholar 

  63. Jolly RA, Goldstein KM, Wei T, Gao H, Chen P, Huang S, Colet JM, Ryan TP, Thomas CE, Estrem ST (2005) Pooling samples within microarray studies: A comparative analysis of rat liver transcription response to prototypical toxicants. Physiol Genomics 22: 346–355

    PubMed  CAS  Google Scholar 

  64. Suzuki H, Inoue T, Matsushita T, Kobayashi K, Horii I, Hirabayashi Y (2008) In vitro gene expression analysis of hepatotoxic drugs in rat primary hepatocytes. J Appl Toxicol 28: 227–236

    PubMed  CAS  Google Scholar 

  65. Craig A, Sidaway J, Holmes E, Orton T, Jackson D, Rowlinson R, Nickson J, Tonge R, Wilson I, Nicholson J (2006) Systems toxicology: Integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 5: 1586–1601

    PubMed  CAS  Google Scholar 

  66. Boverhof DR, Burgoon LD, Tashiro C, Chittim B, Harkema JR, Jump DB, Zacharewski TR (2005) Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-Mediated hepatotoxicity. Toxicol Sci 85: 1048–1063

    PubMed  CAS  Google Scholar 

  67. Zidek N, Hellmann J, Kramer PJ, Hewitt PG (2007) Acute hepatotoxicity: A predictive model based on focused illumina microarrays. Toxicol Sci 99: 289–302

    PubMed  CAS  Google Scholar 

  68. Schnellmann RG (2008) Toxic responses of the kidney. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 583–608

    Google Scholar 

  69. Toback FG (1992) Regeneration after acute tubular necrosis. Kidney Int 41: 226–246

    PubMed  CAS  Google Scholar 

  70. Bennett WM (1997) Drug nephrotoxicity: An overview. Ren Fail 19: 221–224

    PubMed  CAS  Google Scholar 

  71. Thukral SK, Nordone PJ, Hu R, Sullivan L, Galambos E, Fitzpatrick VD, Healy L, Bass MB, Cosenza ME, Afshari CA (2005) Prediction of nephrotoxicant action and identification of candidate toxicity-related biomarkers. Toxicol Pathol 33: 343–355

    PubMed  CAS  Google Scholar 

  72. Duarte CG, Preuss HG (1993) Assessment of renal function-Glomerular and tubular. Clin Lab Med 13: 33–52

    PubMed  CAS  Google Scholar 

  73. Amin RP, Vickers AE, Sistare F, Thompson KL, Roman RJ, Lawton M, Kramer J, Hamadeh HK, Collins J, Grissom S et al (2004) Identification of putative gene based markers of renal toxicity. Environ Health Perspect 112: 465–479

    PubMed  CAS  Google Scholar 

  74. Matejka GL (1998) Expression of GH receptor, IGF-I receptor and IGF-I mRNA in the kidney and liver of rats recovering from unilateral renal ischemia. Growth Horm IGF Res 8: 77–82

    PubMed  CAS  Google Scholar 

  75. Norman JT, Bohman RE, Fischmann G, Bowen JW, McDonough A, Slamon D, Fine LG (1988) Patterns of mRNA expression during early cell growth differ in kidney epithelial cells destined to undergo compensatory hypertrophy versus regenerative hyperplasia. Proc Natl Acad Sci USA 85: 6768–6772

    PubMed  CAS  Google Scholar 

  76. Safirstein R, Price PM, Saggi SJ, Harris RC (1990) Changes in gene expression after temporary renal ischemia. Kidney Int 37: 1515–1521

    PubMed  CAS  Google Scholar 

  77. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273: 4135–4142

    PubMed  CAS  Google Scholar 

  78. Chen G, Bridenbaugh EA, Akintola AD, Catania JM, Vaidya VS, Bonventre JV, Dearman AC, Sampson HW, Zawieja DC, Burghardt RC, Parrish AR (2007) Increased susceptibility of aging kidney to ischemic injury: Identification of candidate genes changed during aging, but corrected by caloric restriction. Am J Physiol Renal Physiol 293: F1272–1281

    PubMed  CAS  Google Scholar 

  79. Tsuji M, Monkawa T,Yoshino J, Asai M, Fukuda S, Kawachi H, Shimizu F, Hayashi M, Saruta T (2006) Microarray analysis of a reversible model and an irreversible model of anti-Thy-1 nephritis. Kidney Int 69: 996–1004

    PubMed  CAS  Google Scholar 

  80. Kramer JA, Pettit SD, Amin RP, Bertram TA, Car B, Cunningham M, Curtiss SW, Davis JW, Kind C, Lawton M et al (2004) Overview on the application of transcription profiling using selected nephrotoxicants for toxicology assessment. Environ Health Perspect 112: 460–464

    PubMed  CAS  Google Scholar 

  81. Kharasch ED, Schroeder JL, Bammler T, Beyer R, Srinouanprachanh S (2006) Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (“compound A”) in rats. Toxicol Sci 90: 419–431

    PubMed  CAS  Google Scholar 

  82. Uehara T, Miyoshi T, Tsuchiya N, Masuno K, Okada M, Inoue S, Torii M, Yamate J, Maruyama T (2007) Comparative analysis of gene expression between renal cortex and papilla in nedaplatininduced nephrotoxicity in rats. Hum Exp Toxicol 26: 767–780

    PubMed  CAS  Google Scholar 

  83. Uehara T, Tsuchiya N, Masuda A, Torii M, Nakamura M, Yamate J, Maruyama T (2008) Time course of the change and amelioration of nedaplatin-induced nephrotoxicity in rats. J Appl Toxicol 28: 388–398

    PubMed  CAS  Google Scholar 

  84. Foster PM, Earl Gary L Jr, (2008) Toxic responses of the reproductive system. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 761–806

    Google Scholar 

  85. Capen CC (2008) Toxic responses of the endocrine system. In: C Klaassen (ed.): Casarett& Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 807–879

    Google Scholar 

  86. Mantovani A, Maranghi F (2005) Risk assessment of chemicals potentially affecting male fertility. Contraception 72: 308–313

    PubMed  CAS  Google Scholar 

  87. Fukushima T, Yamamoto T, Kikkawa R, Hamada Y, Komiyama M, Mori C, Horii I (2005) Effects of male reproductive toxicants on gene expression in rat testes. J Toxicol Sci 30: 195–206

    PubMed  CAS  Google Scholar 

  88. Moustafa GG, Ibrahim ZS, Hashimoto Y, Alkelch AM, Sakamoto KQ, Ishizuka M, Fujita S (2007) Testicular toxicity of profenofos in matured male rats. Arch Toxicol 81: 875–881

    PubMed  CAS  Google Scholar 

  89. Zhou T, Jia X, Chapin RE, Maronpot RR, Harris MW, Liu J, Waalkes MP, Eddy EM (2004) Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol Lett 154: 191–200

    PubMed  CAS  Google Scholar 

  90. Lahousse SA,Wallace DG, Liu D, Gaido KW, Johnson KJ (2006) Testicular gene expression profiling following prepubertal rat mono-(2-ethylhexyl)phthalate exposure suggests a common initial genetic response at fetal and prepubertal ages. Toxicol Sci 93: 369–381

    PubMed  CAS  Google Scholar 

  91. Takamiya M, Lambard S, Huhtaniemi IT (2007) Effect of bisphenol A on human chorionic gonadotrophin-stimulated gene expression of cultured mouse Leydig tumour cells. Reprod Toxicol 24: 265–275

    PubMed  CAS  Google Scholar 

  92. Moggs JG (2005) Molecular responses to xenoestrogens: Mechanistic insights from toxicogenomics. Toxicology 213: 177–193

    PubMed  CAS  Google Scholar 

  93. Suzuki A, Urushitani H, Sato T, Kobayashi T, Watanabe H, Ohta Y, Iguchi T (2007) Gene expression change in the Müllerian duct of the mouse fetus exposed to diethylstilbestrol in utero. Exp Biol Med 232: 503–514

    CAS  Google Scholar 

  94. Newbold RR, Jefferson WN, Grissom SF, Padilla-Banks E, Snyder RJ, Lobenhofer EK (2007) Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol Carcinog 46: 783–796

    PubMed  CAS  Google Scholar 

  95. Dang VH, Choi KC, Hyun SH, Jeung EB (2007) Analysis of gene expression profiles in the offspring of rats following maternal exposure to xenoestrogens. Reprod Toxicol 23: 42–54

    PubMed  CAS  Google Scholar 

  96. Naciff JM, Overmann GJ, Torontali SM, Carr GJ, Khambatta ZS, Tiesman JP, Richardson BD, Daston GP (2007) Uterine temporal response to acute exposure to 17a-ethinyl estradiol in the immature rat. Toxicol Sci 97: 467–490

    PubMed  CAS  Google Scholar 

  97. Hong EJ, Park SH, Choi KC, Leung PC, Jeung EB (2006) Identification of estrogen-regulated genes by microarray analysis of the uterus of immature rats exposed to endocrine disrupting chemicals. Reprod Biol Endocrinol 4: 49

    PubMed  Google Scholar 

  98. Klaper R, Rees CB, Drevnick P, Weber D, Sandheinrich M, Carvan MJ (2006) Gene expression changes related to endocrine function and decline in reproduction in fathead minnow (Pimephales promelas) after dietary methylmercury exposure. Environ Health Perspect 114: 1337–1343

    PubMed  CAS  Google Scholar 

  99. Iguchi T, Sumi M, Tanabe S (2002) Endocrine disruptor issues in Japan. Congenit Anom 42: 106–119

    CAS  Google Scholar 

  100. Iguchi T, Watanabe H, Katsu Y (2007) Toxicogenomics and ecotoxicogenomics for studying endocrine disruption and basic biology. Gen Comp Endocrinol 153: 25–29

    PubMed  CAS  Google Scholar 

  101. Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE (2008) Fifteen years after “Wingspread”-Environmental Endocrine Disrupters and human and wildlife health: Where we are today and where we need to go. Toxicol Sci 105: 235–259

    PubMed  CAS  Google Scholar 

  102. Boverhof DR, Kwekel JC, Humes DG, Burgoon LD, Zacharewski TR (2006) Dioxin induces an estrogen-like, estrogen receptor-dependent gene expression response in the murine uterus. Mol Pharmacol 69: 1599–1606

    PubMed  CAS  Google Scholar 

  103. Miyamoto K (2004) Effects of dioxin on gene expression in female reproductive system in the rat. Environ Sci 11: 47–55

    PubMed  CAS  Google Scholar 

  104. Boverhof DR, Burgoon LD, Williams KJ, Zacharewski TR (2008) Inhibition of estrogen-mediated uterine gene expression responses by dioxin. Mol Pharmacol 73: 82–93

    PubMed  CAS  Google Scholar 

  105. Witschi HR, Pinkerton KE, Van Winkle LS, Last JA (2008) Toxic responses of the respiratory system. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 609–630

    Google Scholar 

  106. Sato H, Sagai M, Suzuki KT, Aoki Y (1999) Identification, by cDNA microarray, of A-raf and proliferating cell nuclear antigen as genes induced in rat lung by exposure to diesel exhaust. Res Commun Mol Pathol Pharmacol 105: 77–86

    PubMed  CAS  Google Scholar 

  107. Verheyen GR, Nuijten JM, Van Hummelen P, Schoeters GR (2004) Microarray analysis of the effect of diesel exhaust particles on in vitro cultured macrophages. Toxicol In Vitro 18: 377–391

    PubMed  CAS  Google Scholar 

  108. Koike E, Hirano S, Furuyama A, Kobayashi T (2004) CDNA microarray analysis of rat alveolar epithelial cells following exposure to organic extract of diesel exhaust particles. Toxicol Appl Pharmacol 201: 178–185

    PubMed  CAS  Google Scholar 

  109. Koike E, Hirano S, Shimojo N, Kobayashi T (2002) CDNA microarray analysis of gene expression in rat alveolar macrophages in response to organic extract of diesel exhaust particles. Toxicol Sci 67: 241–246

    PubMed  CAS  Google Scholar 

  110. Wise H, Balharry D, Reynolds LJ, Sexton K, Richards RJ (2006) Conventional and toxicogenomic assessment of the acute pulmonary damage induced by the instillation of Cardiff PM10 into the rat lung. Sci Total Environ 360: 60–67

    PubMed  CAS  Google Scholar 

  111. Roberts E, Charboneau L, Espina V, Liotta L, Petricoin E, Dreher K (2004) Application of laser capture microdissection and protein microarray technologies in the molecular analysis of airway injury following pollution particle exposure. J Toxicol Environ Health A 67: 851–861

    PubMed  CAS  Google Scholar 

  112. Yanagisawa R, Takano H, Ichinose T, Mizushima K, Nishikawa M, Mori I, Inoue K, Sadakane K, Yoshikawa T (2007) Gene expression analysis of murine lungs following pulmonary exposure to Asian sand dust particles. Exp Biol Med 232: 1109–1118

    CAS  Google Scholar 

  113. Meng QR, Gideon KM, Harbo SJ, Renne RA, Lee MK, Brys AM, Jones R (2006) Gene expression profiling in lung tissues from mice exposed to cigarette smoke, lipopolysaccharide, or smoke plus lipopolysaccharide by inhalation. Inhal Toxicol 18: 555–568

    PubMed  CAS  Google Scholar 

  114. Jeyaseelan S, Chu HW, Young SK, Worthen GS (2004) Transcriptional profiling of lipopolysaccharide-induced acute lung injury. Infect Immun 72: 7247–7256

    PubMed  CAS  Google Scholar 

  115. Cook DN, Wang S, Wang Y, Howles GP, Whitehead GS, Berman KG, Church TD, Frank BC, Gaspard RM, Yu Y et al (2004) Genetic regulation of endotoxin-induced airway disease. Genomics 83: 961–969

    PubMed  CAS  Google Scholar 

  116. McDowell SA, Gammon K, Bachurski CJ,Wiest JS, Leikauf JE, Prows DR, Leikauf GD (2000) Differential gene expression in the initiation and progression of nickel-induced acute lung injury. Am J Respir Cell Mol Biol 23: 466–474

    PubMed  CAS  Google Scholar 

  117. McDowell SA, Gammon K, Zingarelli B, Bachurski CJ, Aronow BJ, Prows DR, Leikauf GD (2003) Inhibition of nitric oxide restores surfactant gene expression following nickel-induced acute lung injury. Am J Respir Cell Mol Biol 28: 188–198

    PubMed  CAS  Google Scholar 

  118. Mallakin A, Kutcher LW, McDowell SA, Kong S, Schuster R, Lentsch AB, Aronow BJ, Leikauf GD, Waltz SE (2006) Gene expression profiles of Mst1r-deficient mice during nickel-induced acute lung injury. Am J Respir Cell Mol Biol 34: 15–27

    PubMed  CAS  Google Scholar 

  119. Wesselkamper SC, Case LM, Henning LN, Borchers MT, Tichelaar JW, Mason JM, Dragin N, Medvedovic M, Sartor MA, Tomlinson CR, Leikauf GD (2005) Gene expression changes during the development of acute lung injury: Role of transforming growth factor β. Am J Respir Crit Care Med 172: 1399–1411

    PubMed  Google Scholar 

  120. Cheng RY, Zhao A, Alvord WG, Powell DA, Bare RM, Masuda A, Takahashi T, Anderson LM, Kasprzak KS (2003) Gene expression dose-response changes in microarrays after exposure of human peripheral lung epithelial cells to nickel(II). Toxicol Appl Pharmacol 191: 22–39

    PubMed  CAS  Google Scholar 

  121. Liu J, Lei D, Waalkes MP, Beliles RP, Morgan DL (2003) Genomic analysis of the rat lung following elemental mercury vapor exposure. Toxicol Sci 74: 174–181

    PubMed  CAS  Google Scholar 

  122. Li GY, Kim M, Kim JH, Lee MO, Chung JH, Lee BH (2008) Gene expression profiling in human lung fibroblast following cadmium exposure. Food Chem Toxicol 46: 1131–1137

    PubMed  CAS  Google Scholar 

  123. Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20: 2393–2395

    PubMed  CAS  Google Scholar 

  124. Katsuma S, Nishi K, Tanigawara K, Ikawa H, Shiojima S, Takagaki K, Kaminishi Y, Suzuki Y, Hirasawa A, Ohgi T et al (2001) Molecular monitoring of bleomycin-induced pulmonary fibrosis by cDNA microarray-based gene expression profiling. Biochem Biophys Res Commun 288: 747–751

    PubMed  CAS  Google Scholar 

  125. Haider Y, Malizia AP, Keating DT, Birch M, Tomlinson A, Martin G, Ferguson MW, Doran PP, Egan JJ (2007) Host predisposition by endogenous transforming growth factor-b1 overexpression promotes pulmonary fibrosis following bleomycin injury. J Inflamm 4: 18

    Google Scholar 

  126. Satomi Y, Tsuchiya W, Mihara K, Ota M, Kasahara Y, Akahori F (2004) Gene expression analysis of the lung following paraquat administration in rats using DNA microarray. J Toxicol Sci 29: 91–100

    PubMed  CAS  Google Scholar 

  127. Satomi Y, Tsuchiya W, Miura D, Kasahara Y, Akahori F (2006) DNA microarray analysis of pulmonary fibrosis three months after exposure to paraquat in rats. J Toxicol Sci 31: 345–355

    PubMed  CAS  Google Scholar 

  128. Gate L, Langlais C, Micillino JC, Nunge H, Bottin MC, Wrobel R, Binet S (2006) Bitumen fumeinduced gene expression profile in rat lung. Toxicol Appl Pharmacol 215: 83–92

    PubMed  CAS  Google Scholar 

  129. Lee CT, Ylostalo J, Friedman M, Hoyle GW (2005) Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure. Toxicol Appl Pharmacol 205: 53–64

    PubMed  CAS  Google Scholar 

  130. Espinoza LA, Valikhani M, Cossio MJ, Carr T, Jung M, Hyde J,Witten ML, Smulson ME (2005) Altered expression of g-synuclein and detoxification-related genes in lungs of rats exposed to JP-8. Am J Respir Cell Mol Biol 32: 192–200

    PubMed  CAS  Google Scholar 

  131. Zhu L, Pi J, Wachi S, Andersen ME, Wu R, Chen Y (2008) Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling. Am J Physiol Lung Cell Mol Physiol 294: L469–477

    PubMed  CAS  Google Scholar 

  132. Kang JY (2008) Toxic responses of the heart and vascular system. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 699–704

    Google Scholar 

  133. Yi X, Bekeredjian R, DeFilippis NJ, Siddiquee Z, Fernandez E, Shohet RV (2006) Transcriptional analysis of doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 290: H1098–1102

    PubMed  CAS  Google Scholar 

  134. Deng S, Kulle B, Hosseini M, Schluter G, Hasenfuss G, Wojnowski L, Schmidt A (2007) Dystrophin-deficiency increases the susceptibility to doxorubicin-induced cardiotoxicity. Eur J Heart Fail 9: 986–994

    PubMed  CAS  Google Scholar 

  135. Lien YC, Noel T, Liu H, Stromberg AJ, Chen KC, St Clair DK (2006) Phospholipase c-d1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Res 66: 4329–4338

    PubMed  CAS  Google Scholar 

  136. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792

    PubMed  CAS  Google Scholar 

  137. Pugatsch T, Abedat S, Lotan C, Beeri R (2006) Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways. Breast Cancer Res 8: R35

    PubMed  Google Scholar 

  138. Lattanzio FA Jr, Tiangco D, Osgood C, Beebe S, Kerry J, Hargrave BY (2005) Cocaine increases intracellular calcium and reactive oxygen species, depolarizes mitochondria, and activates genes associated with heart failure and remodeling. Cardiovasc Toxicol 5: 377–390

    PubMed  CAS  Google Scholar 

  139. Thackaberry EA, Jiang Z, Johnson CD, Ramos KS, Walker MK (2005) Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: Modulation of cell cycle and extracellular matrix genes. Toxicol Sci 88: 231–241

    PubMed  CAS  Google Scholar 

  140. Aragon AC, Kopf PG, Campen MJ, Huwe JK, Walker MK (2008) In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology. Toxicol Sci 101: 321–330

    PubMed  CAS  Google Scholar 

  141. Carney SA, Prasch AL, Heideman W, Peterson RE (2006) Understanding dioxin developmental toxicity using the zebrafish model. Birth Defects Res A Clin Mol Teratol 76: 7–18

    PubMed  CAS  Google Scholar 

  142. Dunnick JK, Lieuallen W, Moyer C, Orzech D, Nyska A (2004) Cardiac damage in rodents after exposure to bis(2-chloroethoxy)methane. Toxicol Pathol 32: 309–317

    PubMed  CAS  Google Scholar 

  143. Dunnick J, Blackshear P, Kissling G, Cunningham M, Parker J, Nyska A (2006) Critical pathways in heart function: Bis(2-chloroethoxy)methane-induced heart gene transcript change in F344 rats. Toxicol Pathol 34: 348–356

    PubMed  CAS  Google Scholar 

  144. Clerk A, Kemp TJ, Zoumpoulidou G, Sugden PH (2007) Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics 29: 118–127

    PubMed  CAS  Google Scholar 

  145. Slikker W Jr, Bowyer JF (2005) Biomarkers of adult and developmental neurotoxicity. Toxicol Appl Pharmacol 206: 255–260

    PubMed  CAS  Google Scholar 

  146. Hardman JG, Gilman AG, Limbird LE (1996) Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 9th edn. McGraw-Hill, New York, 219–221

    Google Scholar 

  147. Bowyer JF, Harris AJ, Delongchamp RR, Jakab RL, Miller DB, Little AR, O’Callaghan JP (2004) Selective changes in gene expression in cortical regions sensitive to amphetamine during the neurodegenerative process. Neurotoxicology 25: 555–572

    PubMed  CAS  Google Scholar 

  148. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311: 1–7

    PubMed  CAS  Google Scholar 

  149. Barrett T, Xie T, Piao Y, Dillon-Carter O, Kargul GJ, Lim MK, Chrest FJ,Wersto R, Rowley DL, Juhaszova M et al (2001) A murine dopamine neuron-specific cDNA library and microarray: Increased COX1 expression during methamphetamine neurotoxicity. Neurobiol Dis 8: 822–833

    PubMed  CAS  Google Scholar 

  150. Xie T, Tong L, Barrett T, Yuan J, Hatzidimitriou G, McCann UD, Becker KG, Donovan DM, Ricaurte GA (2002) Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 22: 274–283

    PubMed  CAS  Google Scholar 

  151. Thomas DM, Francescutti-Verbeem DM, Liu X, Kuhn DM (2004) Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment-An oligonucleotide microarray approach. J Neurochem 88: 380–393

    PubMed  CAS  Google Scholar 

  152. Thomas DM, Kuhn DM (2005) Cyclooxygenase-2 is an obligatory factor in methamphetamineinduced neurotoxicity. J Pharmacol Exp Ther 313: 870–876

    PubMed  CAS  Google Scholar 

  153. Kuhn DM, Francescutti-Verbeem DM, Thomas DM (2006) Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: Relationship to methamphetamine-induced nerve ending damage. Ann NY Acad Sci 1074: 31–41

    PubMed  CAS  Google Scholar 

  154. Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA (2002) Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem 81: 802–813

    PubMed  CAS  Google Scholar 

  155. Lewohl JM, Wang L, Miles MF, Zhang L, Dodd PR, Harris RA (2000) Gene expression in human alcoholism: Microarray analysis of frontal cortex. Alcohol Clin Exp Res 24: 1873–1882

    PubMed  CAS  Google Scholar 

  156. Lewohl JM, Dodd PR, Mayfield RD, Harris RA (2001) Application of DNA microarrays to study human alcoholism. J Biomed Sci 8: 28–36

    PubMed  CAS  Google Scholar 

  157. Liu J, Lewohl JM, Dodd PR, Randall PK, Harris RA, Mayfield RD (2004) Gene expression profiling of individual cases reveals consistent transcriptional changes in alcoholic human brain. J Neurochem 90: 1050–1058

    PubMed  CAS  Google Scholar 

  158. Liu J, Lewohl JM, Harris RA, Iyer VR, Dodd PR, Randall PK, Mayfield RD (2006) Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 31: 1574–1582

    PubMed  CAS  Google Scholar 

  159. Liu J, Lewohl JM, Harris RA, Dodd PR, Mayfield RD (2007) Altered gene expression profiles in the frontal cortex of cirrhotic alcoholics. Alcohol Clin Exp Res 31: 1460–1466

    PubMed  CAS  Google Scholar 

  160. Saito M, Smiley J, Toth R, Vadasz C (2002) Microarray analysis of gene expression in rat hippocampus after chronic ethanol treatment. Neurochem Res 27: 1221–1229

    PubMed  CAS  Google Scholar 

  161. Treadwell JA, Singh SM (2004) Microarray analysis of mouse brain gene expression following acute ethanol treatment. Neurochem Res 29: 357–369

    PubMed  CAS  Google Scholar 

  162. Hashimoto JG, Wiren KM (2008) Neurotoxic consequences of chronic alcohol withdrawal: Expression profiling reveals importance of gender over withdrawal severity. Neuropsychopharmacology 33: 1084–1096

    PubMed  CAS  Google Scholar 

  163. Mandel S, Grunblatt E, Youdim M (2000) cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: Implications for idiopathic Parkinson’s disease. J Neural Transm Suppl: 117–124

    Google Scholar 

  164. Youdim MB (2003) What have we learnt from cDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson’s disease? J Neural Transm Suppl: 73–88

    Google Scholar 

  165. Holtz WA, Turetzky JM, O’Malley KL (2005) Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cell death. Antioxid Redox Signal 7: 639–648

    PubMed  CAS  Google Scholar 

  166. Sakai R, Irie Y, Murata T, Ishige A, Anjiki N, Watanabe K (2007) Toki-to protects dopaminergic neurons in the substantia nigra from neurotoxicity of MPTP in mice. Phytother Res 21: 868–873

    PubMed  Google Scholar 

  167. Mense SM, Sengupta A, Lan C, Zhou M, Bentsman G, Volsky DJ, Whyatt RM, Perera FP, Zhang L (2006) The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes. Toxicol Sci 93: 125–135

    PubMed  CAS  Google Scholar 

  168. Slotkin TA, Seidler FJ (2007) Comparative developmental neurotoxicity of organophosphates in vivo: Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 72: 232–274

    PubMed  CAS  Google Scholar 

  169. Hossain MA, Bouton CM, Pevsner J, Laterra J (2000) Induction of vascular endothelial growth factor in human astrocytes by lead. Involvement of a protein kinase C/activator protein-1 complex-dependent and hypoxia-inducible factor 1-independent signaling pathway. J Biol Chem 275: 27874–27882

    PubMed  CAS  Google Scholar 

  170. Cheng JP, Yuan T, Ji XL, Zheng M, Wang Y, Wang WH, Zhang QH (2006) [Analyzing differentially expressed genes in the brain of rat exposed to mercury chloride using cDNA microarray.] Huan Jing Ke Xue 27: 779–782

    PubMed  CAS  Google Scholar 

  171. Sengupta A, Mense SM, Lan C, Zhou M, Mauro RE, Kellerman L, Bentsman G, Volsky DJ, Louis ED, Graziano JH, Zhang L (2007) Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology 28: 478–489

    PubMed  CAS  Google Scholar 

  172. Rice RH, Mauro TM (2008) Toxic responses of the skin. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 741–760

    Google Scholar 

  173. Cluzel-Tailhardat M, Bonnet-Duquennoy M, de Queral DP, Vocanson M, Kurfurst R, Courtellemont P, Le Varlet B, Nicolas JF (2007) Chemicals with weak skin sensitizing properties can be identified using low-density microarrays on immature dendritic cells. Toxicol Lett 174: 98–109

    PubMed  CAS  Google Scholar 

  174. McDougal JN, Garrett CM, Amato CM, Berberich SJ (2007) Effects of brief cutaneous JP-8 jet fuel exposures on time course of gene expression in the epidermis. Toxicol Sci 95: 495–510

    PubMed  CAS  Google Scholar 

  175. McDougal JN, Garrett CM (2007) Gene expression and target tissue dose in the rat epidermis after brief JP-8 and JP-8 aromatic and aliphatic component exposures. Toxicol Sci 97: 569–581

    PubMed  CAS  Google Scholar 

  176. Ridd K, Zhang SD, Edwards RE, Davies R, Greaves P, Wolfreys A, Smith AG, Gant TW (2006) Association of gene expression with sequential proliferation, differentiation and tumor formation in murine skin. Carcinogenesis 27: 1556–1566

    PubMed  CAS  Google Scholar 

  177. Bloom JC, Brandt JT (2008) Toxic responses of the blood. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 455–484

    Google Scholar 

  178. Rokushima M, Omi K, Araki A, Kyokawa Y, Furukawa N, Itoh F, Imura K, Takeuchi K, Okada M, Kato I, Ishizaki J 007) A toxicogenomic approach revealed hepatic gene expression changes mechanistically linked to drug-induced hemolytic anemia. Toxicol Sci 95: 474–484

    Google Scholar 

  179. Rokushima M, Omi K, Imura K, Araki A, Furukawa N, Itoh F, Miyazaki M, Yamamoto J, Rokushima M, Okada M et al (2007) Toxicogenomics of drug-induced hemolytic anemia by analyzing gene expression profiles in the spleen. Toxicol Sci 100: 290–302

    PubMed  CAS  Google Scholar 

  180. Forrest MS, Lan Q, Hubbard AE, Zhang L, Vermeulen R, Zhao X, Li G, Wu YY, Shen M, Yin S et al (2005) Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ Health Perspect 113: 801–807

    PubMed  CAS  Google Scholar 

  181. Smith MT, Vermeulen R, Li G, Zhang L, Lan Q, Hubbard AE, Forrest MS, McHale C, Zhao X, Gunn L et al (2005) Use of ‘Omic’ technologies to study humans exposed to benzene. Chem Biol Interact 153-154: 123–127

    PubMed  CAS  Google Scholar 

  182. Faiola B, Fuller ES,Wong VA, Pluta L, Abernethy DJ, Rose J, Recio L (2004) Exposure of hematopoietic stem cells to benzene or 1,4-benzoquinone induces gender-specific gene expression. Stem Cells 22: 750–758

    PubMed  CAS  Google Scholar 

  183. Faiola B, Fuller ES, Wong VA, Recio L (2004) Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene. Mutat Res 549: 195–212

    PubMed  CAS  Google Scholar 

  184. Yoon BI, Li GX, Kitada K, Kawasaki Y, Igarashi K, Kodama Y, Inoue T, Kobayashi K, Kanno J, Kim DY et al (2003) Mechanisms of benzene-induced hematotoxicity and leukemogenicity: cDNA microarray analyses using mouse bone marrow tissue. Environ Health Perspect 111: 1411–1420

    PubMed  CAS  Google Scholar 

  185. Hirabayashi Y, Yoon BI, Li GX, Kanno J, Inoue T (2004) Mechanism of benzene-induced hema-totoxicity and leukemogenicity: Current review with implication of microarray analyses. Toxicol Pathol 32Suppl 2: 12–16

    PubMed  CAS  Google Scholar 

  186. Kaminski NE, Faubert Kaplan BL, Holsapple MP (2008) Toxic responses of the immune system. In: C Klaassen (ed.): Casarett & Doull’s Toxicology: The Basic Sciences of Poisons, 7th edn. McGraw-Hill, New York, 485–556

    Google Scholar 

  187. Luebke RW, Holsapple MP, Ladics GS, Luster MI, Selgrade M, Smialowicz RJ, Woolhiser MR, Germolec DR (2006) Immunotoxicogenomics: The potential of genomics technology in the immunotoxicity risk assessment process. Toxicol Sci 94: 22–27

    PubMed  CAS  Google Scholar 

  188. Baken KA, Vandebriel RJ, Pennings JL, Kleinjans JC, van Loveren H (2007) Toxicogenomics in the assessment of immunotoxicity. Methods 41: 132–141

    PubMed  CAS  Google Scholar 

  189. Ezendam J, Staedtler F, Pennings J, Vandebriel RJ, Pieters R, Harleman JH, Vos JG (2004) Toxicogenomics of subchronic hexachlorobenzene exposure in Brown Norway rats. Environ Health Perspect 112: 782–791

    PubMed  CAS  Google Scholar 

  190. Inadera H (2006) The immune system as a target for environmental chemicals: Xenoestrogens and other compounds. Toxicol Lett 164: 191–206

    PubMed  CAS  Google Scholar 

  191. Zeytun A, McKallip RJ, Fisher M, Camacho I, Nagarkatti M, Nagarkatti PS (2002) Analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced gene expression profile in vivo using pathway-specific cDNA arrays. Toxicology 178: 241–260

    PubMed  CAS  Google Scholar 

  192. Nagai H, Takei T, Tohyama C, Kubo M, Abe R, Nohara K (2005) Search for the target genes involved in the suppression of antibody production by TCDD in C57BL/6 mice. Int Immunopharmacol 5: 331–343

    PubMed  CAS  Google Scholar 

  193. He B, Munson AE, Meade BJ (2001) Analysis of gene expression induced by irritant and sensitizing chemicals using oligonucleotide arrays. Int Immunopharmacol 1: 867–879

    PubMed  CAS  Google Scholar 

  194. Betts CJ, Moggs JG, Caddick HT, Cumberbatch M, Orphanides G, Dearman RJ, Ryan CA, Hulette BC, Frank Gerberick G, Kimber I (2003) Assessment of glycosylation-dependent cell adhesion molecule 1 as a correlate of allergen-stimulated lymph node activation. Toxicology 185: 103–117

    PubMed  CAS  Google Scholar 

  195. Ryan CA, Gildea LA, Hulette BC, Dearman RJ, Kimber I, Gerberick GF (2004) Gene expression changes in peripheral blood-derived dendritic cells following exposure to a contact allergen. Toxicol Lett 150: 301–316

    PubMed  CAS  Google Scholar 

  196. Gildea LA, Ryan CA, Foertsch LM, Kennedy JM, Dearman RJ, Kimber I, Gerberick GF (2006) Identification of gene expression changes induced by chemical allergens in dendritic cells: Opportunities for skin sensitization testing. J Invest Dermatol 126: 1813–1822

    PubMed  CAS  Google Scholar 

  197. Hansen MB, Skov L, Menne T, Olsen J (2005) Gene transcripts as potential diagnostic markers for allergic contact dermatitis. Contact Dermatitis 53: 100–106

    PubMed  CAS  Google Scholar 

  198. Kinser S, Jia Q, Li M, Laughter A, Cornwell P, Corton JC, Pestka J (2004) Gene expression profiling in spleens of deoxynivalenol-exposed mice: Immediate early genes as primary targets. J Toxicol Environ Health A 67: 1423–1441

    PubMed  CAS  Google Scholar 

  199. Royaee AR, Hammamieh R, Mendis C, Das R, Jett M, DC HY (2006) Induction of immunomodulator transcriptional responses by cholera toxin. Mol Immunol 43: 1020–1028

    PubMed  CAS  Google Scholar 

  200. Royaee AR, Jong L, Mendis C, Das R, Jett M, Yang DC (2006) Cholera toxin induced novel genes in human lymphocytes and monocytes. Mol Immunol 43: 1267–1274

    PubMed  CAS  Google Scholar 

  201. Royaee AR, Mendis C, Das R, Jett M, Yang DC (2006) Cholera toxin induced gene expression alterations. Mol Immunol 43: 702–709

    PubMed  CAS  Google Scholar 

  202. Ueno K, Yamaura K, Nakamura T, Satoh T,Yano S (2000) Acetaminophen-induced immunosuppression associated with hepatotoxicity in mice. Res Commun Mol Pathol Pharmacol 108: 237–251

    PubMed  CAS  Google Scholar 

  203. Yamaura K, Ogawa K, Yonekawa T, Nakamura T, Yano S, Ueno K (2002) Inhibition of the antibody production by acetaminophen independent of liver injury in mice. Biol Pharm Bull 25: 201–205

    PubMed  CAS  Google Scholar 

  204. Baken KA, Pennings JL, Jonker MJ, Schaap MM, de Vries A, van Steeg H, Breit TM, van Loveren H (2008) Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening. Toxicol Appl Pharmacol 226: 46–59

    PubMed  CAS  Google Scholar 

  205. Gant TW (2007) Novel and future applications of microarrays in toxicological research. Expert Opin Drug Metab Toxicol 3: 599–608

    PubMed  CAS  Google Scholar 

  206. Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P, Curry B, Baird K, Meltzer PS et al (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101: 17765–17770

    PubMed  CAS  Google Scholar 

  207. Pinkel D, Albertson DG (2005) Comparative genomic hybridization. Annu Rev Genomics Hum Genet 6: 331–354

    PubMed  CAS  Google Scholar 

  208. Bastian BC, Olshen AB, LeBoit PE, Pinkel D (2003) Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 163: 1765–1770

    PubMed  CAS  Google Scholar 

  209. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W et al (2006) Global variation in copy number in the human genome. Nature 444: 444–454

    PubMed  CAS  Google Scholar 

  210. Watson RE, Goodman JI (2002) Epigenetics and DNA methylation come of age in toxicology. Toxicol Sci 67: 11–16

    PubMed  CAS  Google Scholar 

  211. van Steensel B (2005) Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 37 Suppl: S18–24

    Google Scholar 

  212. Barber RC, Dubrova YE (2006) The offspring of irradiated parents, are they stable? Mutat Res 598: 50–60

    PubMed  CAS  Google Scholar 

  213. Vilarino-Guell C, Smith AG, Dubrova YE (2003) Germline mutation induction at mouse repeat DNA loci by chemical mutagens. Mutat Res 526: 63–73

    PubMed  CAS  Google Scholar 

  214. Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, Jones GD, Johnson GE, Parry JM, Rothkamm K, Dubrova YE (2006) Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene 25: 7336–7342

    PubMed  CAS  Google Scholar 

  215. Li S, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, McLachlan JA, Negishi M (1997) Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res 57: 4356–4359

    PubMed  CAS  Google Scholar 

  216. Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC (2003) Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog 38: 78–84

    PubMed  CAS  Google Scholar 

  217. Pollack JR, Iyer VR (2002) Characterizing the physical genome. Nat Genet 32 Suppl: 515–521

    PubMed  CAS  Google Scholar 

  218. Wang X, Tomso DJ, Chorley BN, Cho HY, Cheung VG, Kleeberger SR, Bell DA (2007) Identification of polymorphic antioxidant response elements in the human genome. Hum Mol Genet 16: 1188–1200

    PubMed  CAS  Google Scholar 

  219. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22: 165–173

    PubMed  CAS  Google Scholar 

  220. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051–4060

    PubMed  CAS  Google Scholar 

  221. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12: 913–920

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Zhou, T., Chou, J., Watkins, P.B., Kaufmann, W.K. (2009). Toxicogenomics: transcription profiling for toxicology assessment. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 99. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8336-7_12

Download citation

Publish with us

Policies and ethics