Receptors mediating toxicity and their involvement in endocrine disruption

  • Joëlle Rüegg
  • Pauliina Penttinen-Damdimopoulou
  • Sari Mäkelä
  • Ingemar Pongratz
  • Jan-Åke Gustafsson
Part of the Experientia Supplementum book series (EXS, volume 99)


Many toxic compounds exert their harmful effects by activating of certain receptors, which in turn leads to dysregulation of transcription. Some of these receptors are so called xenosensors. They are activated by external chemicals and evoke a cascade of events that lead to the elimination of the chemical from the system. Other receptors that are modulated by toxic substances are hormone receptors, particularly the ones of the nuclear receptor family. Some environmental chemicals resemble endogenous hormones and can falsely activate these receptors, leading to undesired activity in the cell. Furthermore, excessive activation of the xenosensors can lead to disturbances of the integrity of the system as well. In this chapter, the concepts of receptor-mediated toxicity and hormone disruption are introduced. We start by describing environmental chemicals that can bind to xenosensors and nuclear hormone receptors. We then describe the receptors most commonly targeted by environmental chemicals. Finally, the mechanisms by which receptor-mediated events can disrupt the system are depicted.


Estrogen Receptor Androgen Receptor Mineralocorticoid Receptor Aryl Hydrocarbon Receptor Constitutive Androstane Receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R (2006) Activation of a-and b-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci 79: 1160–1169PubMedGoogle Scholar
  2. 2.
    Kavlock R, Cummings A (2005) Mode of action: Inhibition of androgen receptor function-Vinclozolin-induced malformations in reproductive development. Crit Rev Toxicol 35: 721–726PubMedGoogle Scholar
  3. 3.
    Molina-Molina JM, Hillenweck A, Jouanin I, Zalko D, Cravedi JP, Fernandez MF, Pillon A, Nicolas JC, Olea N, Balaguer P (2006) Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol Appl Pharmacol 216: 44–54PubMedGoogle Scholar
  4. 4.
    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor b. Endocrinology 139: 4252–4263PubMedGoogle Scholar
  5. 5.
    Bonefeld-Jorgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: New data and a brief review. Environ Health Perspect 115 Suppl 1: 69–76PubMedGoogle Scholar
  6. 6.
    Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci 84: 249–259PubMedGoogle Scholar
  7. 7.
    Fini JB, Le Mevel S, Turque N, Palmier K, Zalko D, Cravedi JP, Demeneix BA (2007) An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ Sci Technol 41: 5908–5914PubMedGoogle Scholar
  8. 8.
    Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ (2007) The multitude and diversity of environmental carcinogens. Environ Res 105: 414–429PubMedGoogle Scholar
  9. 9.
    Costa LG, Giordano G, Guizzetti M, Vitalone A (2008) Neurotoxicity of pesticides: A brief review. Front Biosci 13: 1240–1249PubMedGoogle Scholar
  10. 10.
    Repetto R, Baliga SS (1997) Pesticides and immunosuppression: The risks to public health. Health Policy Plan 12: 97–106PubMedGoogle Scholar
  11. 11.
    Arcaro KF, O’Keefe PW,Yang Y, Clayton W, Gierthy JF (1999) Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology 133: 115–127PubMedGoogle Scholar
  12. 12.
    Swedenborg E, Ruegg J, Hillenweck A, Rehnmark S, Faulds MH, Zalko D, Pongratz I, Pettersson K (2008) 3-Methylcholanthrene displays dual effects on estrogen receptor (ER) a and ER b signaling in a cell-type specific fashion. Mol Pharmacol 73: 575–586PubMedGoogle Scholar
  13. 13.
    Bock KW, Kohle C (2006) Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 72: 393–404PubMedGoogle Scholar
  14. 14.
    IARC (1997) Working Group on the Evaluation of Carcinogenic Risks to Humans: Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. IARC Monogr Eval Carcinog Risks Hum 69: 1–631Google Scholar
  15. 15.
    Remillard RB, Bunce NJ (2002) Linking dioxins to diabetes: Epidemiology and biologic plausibility. Environ Health Perspect 110: 853–858PubMedGoogle Scholar
  16. 16.
    Warner M, Eskenazi B, Mocarelli P, Gerthoux PM, Samuels S, Needham L, Patterson D, Brambilla P (2002) Serum dioxin concentrations and breast cancer risk in the Seveso Women’s Health Study. Environ Health Perspect 110: 625–628PubMedGoogle Scholar
  17. 17.
    Wynne-Edwards KE (2001) Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates. Environ Health Perspect 109: 443–448PubMedGoogle Scholar
  18. 18.
    Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43: 309–334PubMedGoogle Scholar
  19. 19.
    Amakura Y, Tsutsumi T, Sasaki K, Nakamura M, Yoshida T, Maitani T (2008) Influence of food polyphenols on aryl hydrocarbon receptor-signaling pathway estimated by in vitro bioassay. Phytochemistry; in pressGoogle Scholar
  20. 20.
    Sanders TH, McMichael RW Jr, Hendrix KW (2000) Occurrence of resveratrol in edible peanuts. J Agric Food Chem 48: 1243–1246PubMedGoogle Scholar
  21. 21.
    Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52: 4713–4719PubMedGoogle Scholar
  22. 22.
    Gillner M, Bergman J, Cambillau C, Fernstrom B, Gustafsson JA (1985) Interactions of indoles with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Mol Pharmacol 28: 357–363PubMedGoogle Scholar
  23. 23.
    Ciolino HP, Daschner PJ, Yeh GC (1998) Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 58: 5707–5712PubMedGoogle Scholar
  24. 24.
    Casper RF, Quesne M, Rogers IM, Shirota T, Jolivet A, Milgrom E, Savouret JF (1999) Resveratrol has antagonist activity on the aryl hydrocarbon receptor: Implications for prevention of dioxin toxicity. Mol Pharmacol 56: 784–790PubMedGoogle Scholar
  25. 25.
    Chen ZH, Hurh YJ, Na HK, Kim JH, Chun YJ, Kim DH, Kang KS, Cho MH, Surh YJ (2004) Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogenReceptors mediating toxicity and their involvement in endocrine disruption 319 mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25: 2005–2013PubMedGoogle Scholar
  26. 26.
    Bradbury RB, White DE (1954) Estrogens and related substances in plants. Vitam Horm 12: 207–233PubMedGoogle Scholar
  27. 27.
    Benassayag C, Perrot-Applanat M, Ferre F (2002) Phytoestrogens as modulators of steroid action in target cells. J Chromatogr B Analyt Technol Biomed Life Sci 777: 233–248PubMedGoogle Scholar
  28. 28.
    Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Makela S, Pongratz I (2007) Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148: 4875–4886PubMedGoogle Scholar
  29. 29.
    Mueller SO, Simon S, Chae K, Metzler M, Korach KS (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor a (ERa) and ERb in human cells. Toxicol Sci 80: 14–25PubMedGoogle Scholar
  30. 30.
    Helguero LA, Faulds MH, Gustafsson JA, Haldosen LA (2005) Estrogen receptors a (ERa) and b (ERb) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24: 6605–6616PubMedGoogle Scholar
  31. 31.
    Moutsatsou P (2007) The spectrum of phytoestrogens in nature: Our knowledge is expanding. Hormones (Athens) 6: 173–193Google Scholar
  32. 32.
    Adlercreutz H (2002) Phyto-oestrogens and cancer. Lancet Oncol 3: 364–373PubMedGoogle Scholar
  33. 33.
    Nakata K, Tanaka Y, Nakano T, Adachi T, Tanaka H, Kaminuma T, Ishikawa T (2006) Nuclear receptor-mediated transcriptional regulation in phase I, II, and III xenobiotic metabolizing systems. Drug Metab Pharmacokinet 21: 437–457PubMedGoogle Scholar
  34. 34.
    Kliewer SA, Willson TM (2002) Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 43: 359–364PubMedGoogle Scholar
  35. 35.
    Pascussi JM, Gerbal-Chaloin S, Drocourt L, Assenat E, Larrey D, Pichard-Garcia L, Vilarem MJ, Maurel P (2004) Cross-talk between xenobiotic detoxication and other signalling pathways: Clinical and toxicological consequences. Xenobiotica 34: 633–664PubMedGoogle Scholar
  36. 36.
    Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: Sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40: 519–561PubMedGoogle Scholar
  37. 37.
    Keith B, Adelman DM, Simon MC (2001) Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci USA 98: 6692–6697PubMedGoogle Scholar
  38. 38.
    Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N, Fujii-Kuriyama Y (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun 248: 789–794PubMedGoogle Scholar
  39. 39.
    Rowlands JC, Gustafsson JA (1997) Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol 27: 109–134PubMedGoogle Scholar
  40. 40.
    Wilson CL, Safe S (1998) Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses. Toxicol Pathol 26: 657–671PubMedGoogle Scholar
  41. 41.
    Schmidt JV, Bradfield CA (1996) Ah receptor signaling pathways. Annu Rev Cell Dev Biol 12: 55–89PubMedGoogle Scholar
  42. 42.
    Poland A, Knutson JC (1982) 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 22: 517–554PubMedGoogle Scholar
  43. 43.
    Petrulis JR, Perdew GH (2002) The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem Biol Interact 141: 25–40PubMedGoogle Scholar
  44. 44.
    Hankinson O (2005) Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys 433: 379–386PubMedGoogle Scholar
  45. 45.
    Matthews J, Wihlen B, Thomsen J, Gustafsson JA (2005) Aryl hydrocarbon receptor-mediated transcription: Ligand-dependent recruitment of estrogen receptor a to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25: 5317–5328PubMedGoogle Scholar
  46. 46.
    Kollara A, Brown TJ (2006) Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor. Biochem Biophys Res Commun 346: 526–534PubMedGoogle Scholar
  47. 47.
    Son DS, Roby KF, Rozman KK, Terranova PF (2002) Estradiol enhances and estriol inhibits the expression of CYP1A1 induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in a mouse ovarian cancer cell line. Toxicology 176: 229–243PubMedGoogle Scholar
  48. 48.
    Spink DC, Katz BH, Hussain MM, Pentecost BT, Cao Z, Spink BC (2003) Estrogen regulates Ah responsiveness in MCF-7 breast cancer cells. Carcinogenesis 24: 1941–1950PubMedGoogle Scholar
  49. 49.
    Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of 320 J. Rüegg et al. regulation of Ah (dioxin) receptor function. Genes Dev 13: 20–25PubMedGoogle Scholar
  50. 50.
    Evans BR, Karchner SI, Allan LL, Pollenz RS, Tanguay RL, Jenny MJ, Sherr DH, Hahn ME (2008) Repression of aryl hydrocarbon receptor (AHR) signaling by AHR repressor: Role of DNA binding and competition for AHR nuclear translocator. Mol Pharmacol 73: 387–398PubMedGoogle Scholar
  51. 51.
    Dunlap JC, Loros JJ, Liu Y, Crosthwaite SK (1999) Eukaryotic circadian systems: Cycles in common. Genes Cells 4: 1–10PubMedGoogle Scholar
  52. 52.
    Klinge CM, Jernigan SC, Risinger KE, Lee JE, Tyulmenkov VV, Falkner KC, Prough RA (2001) Short heterodimer partner (SHP) orphan nuclear receptor inhibits the transcriptional activity of aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT). Arch Biochem Biophys 390: 64–70PubMedGoogle Scholar
  53. 53.
    Kumar MB, Tarpey RW, Perdew GH (1999) Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 274: 22155–22164PubMedGoogle Scholar
  54. 54.
    Sadek CM, Jalaguier S, Feeney EP, Aitola M, Damdimopoulos AE, Pelto-Huikko M, Gustafsson JA (2000) Isolation and characterization of AINT: A novel ARNT interacting protein expressed during murine embryonic development. Mech Dev 97: 13–26PubMedGoogle Scholar
  55. 55.
    Puga A, Xia Y, Elferink C (2002) Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact 141: 117–130PubMedGoogle Scholar
  56. 56.
    Weiss C, Faust D, Durk H, Kolluri SK, Pelzer A, Schneider S, Dietrich C, Oesch F, Göttlicher M (2005) TCDD induces c-jun expression via a novel Ah (dioxin) receptor-mediated p38-MAPKdependent pathway. Oncogene 24: 4975–4983PubMedGoogle Scholar
  57. 57.
    Oesch-Bartlomowicz B, Huelster A, Wiss O, Antoniou-Lipfert P, Dietrich C, Arand M, Weiss C, Bockamp E, Oesch F (2005) Aryl hydrocarbon receptor activation by cAMP versus dioxin: Divergent signaling pathways. Proc Natl Acad Sci USA 102: 9218–9223PubMedGoogle Scholar
  58. 58.
    Reen RK, Cadwallader A, Perdew GH (2002) The subdomains of the transactivation domain of the aryl hydrocarbon receptor (AhR) inhibit AhR and estrogen receptor transcriptional activity. Arch Biochem Biophys 408: 93–102PubMedGoogle Scholar
  59. 59.
    Kohle C, Bock KW (2007) Coordinate regulation of phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol 73: 1853–1862PubMedGoogle Scholar
  60. 60.
    Nebert DW, Roe AL, Dieter MZ, Solis WA,Yang Y, Dalton TP (2000) Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 59: 65–85PubMedGoogle Scholar
  61. 61.
    Lahvis GP, Bradfield CA (1998) Ahr null alleles: Distinctive or different? Biochem Pharmacol 56: 781–787PubMedGoogle Scholar
  62. 62.
    Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ (1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140: 173–179PubMedGoogle Scholar
  63. 63.
    Peters JM, Narotsky MG, Elizondo G, Fernandez-Salguero PM, Gonzalez FJ, Abbott BD (1999) Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. Toxicol Sci 47: 86–92PubMedGoogle Scholar
  64. 64.
    Lin TM, Ko K, Moore RW, Simanainen U, Oberley TD, Peterson RE (2002) Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in C57BL/6 mice. Toxicol Sci 68: 479–487PubMedGoogle Scholar
  65. 65.
    Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S, Hanberg A, Poellinger L (2002) A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci U S A 99: 9990–9995PubMedGoogle Scholar
  66. 66.
    Seidel SD, Winters GM, Rogers WJ, Ziccardi MH, Li V, Keser B, Denison MS (2001) Activation of the Ah receptor signaling pathway by prostaglandins. J Biochem Mol Toxicol 15: 187–196PubMedGoogle Scholar
  67. 67.
    Rannug U, Rannug A, Sjoberg U, Li H,Westerholm R, Bergman J (1995) Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol 2: 841–845PubMedGoogle Scholar
  68. 68.
    Adachi J, Mori Y, Matsui S, Takigami H, Fujino J, Kitagawa H, Miller CA 3rd, Kato T, Saeki K, Matsuda T (2001) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276: 31475–31478PubMedGoogle Scholar
  69. 69.
    Mukai M, Tischkau SA (2007) Effects of tryptophan photoproducts in the circadian timing system: Searching for a physiological role for aryl hydrocarbon receptor. Toxicol Sci 95: 172–181PubMedGoogle Scholar
  70. 70.
    Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3: 950–964PubMedGoogle Scholar
  71. 71.
    Picard D (2006) Chaperoning steroid hormone action. Trends Endocrinol Metab 17: 229–235PubMedGoogle Scholar
  72. 72.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Turner E, Warner M, Gustafsson JA (2007) Estrogen receptors: How do they signal and what are their targets. Physiol Rev 87: 905–931PubMedGoogle Scholar
  73. 73.
    Lee KC, Lee Kraus W (2001) Nuclear receptors, coactivators and chromatin: New approaches, new insights. Trends Endocrinol Metab 12: 191–197PubMedGoogle Scholar
  74. 74.
    Timsit YE, Negishi M (2007) CAR and PXR: The xenobiotic-sensing receptors. Steroids 72: 231–246PubMedGoogle Scholar
  75. 75.
    Tabb MM, Kholodovych V, Grun F, Zhou C, Welsh WJ, Blumberg B (2004) Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environ Health Perspect 112: 163–169PubMedGoogle Scholar
  76. 76.
    Tzameli I, Moore DD (2001) Role reversal: New insights from new ligands for the xenobiotic receptor CAR. Trends Endocrinol Metab 12: 7–10PubMedGoogle Scholar
  77. 77.
    Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, Stimmel JB, Goodwin B, Liddle C, Blanchard SG, Willson TM et al (2000) Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 275: 15122–15127PubMedGoogle Scholar
  78. 78.
    Kobayashi K, Sueyoshi T, Inoue K, Moore R, Negishi M (2003) Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells. Mol Pharmacol 64: 1069–1075PubMedGoogle Scholar
  79. 79.
    Squires EJ, Sueyoshi T, Negishi M (2004) Cytoplasmic localization of pregnane X receptor and ligand-dependent nuclear translocation in mouse liver. J Biol Chem 279: 49307–49314PubMedGoogle Scholar
  80. 80.
    Wang K, Mendy AJ, Dai G, Luo HR, He L, Wan YJ (2006) Retinoids activate the RXR/SXRmediated pathway and induce the endogenous CYP3A4 activity in Huh7 human hepatoma cells. Toxicol Sci 92: 51–60PubMedGoogle Scholar
  81. 81.
    Ding X, Staudinger JL (2005) Induction of drug metabolism by forskolin: The role of the pregnane X receptor and the protein kinase a signal transduction pathway. J Pharmacol Exp Ther 312: 849–856PubMedGoogle Scholar
  82. 82.
    Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD (1994) A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14: 1544–1552PubMedGoogle Scholar
  83. 83.
    Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA (2002) Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 62: 638–646PubMedGoogle Scholar
  84. 84.
    Kretschmer XC, Baldwin WS (2005) CAR and PXR: Xenosensors of endocrine disrupters? Chem Biol Interact 155: 111–128PubMedGoogle Scholar
  85. 85.
    Handschin C, Meyer UA (2005) Regulatory network of lipid-sensing nuclear receptors: Roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 433: 387–396PubMedGoogle Scholar
  86. 86.
    Jensen EV, Jacobson HJ (1962) Basic guides to the mechanism of estrogen action. Recent Prog Horm Res 18: 318–414Google Scholar
  87. 87.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93: 5925–5930PubMedGoogle Scholar
  88. 88.
    Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjold M, Gustafsson JA (1997) Human estrogen receptor b-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82: 4258–4265PubMedGoogle Scholar
  89. 89.
    Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, Sonntag-Buck V, Gannon F (2000) Identification of a new isoform of the human estrogen receptor-a (hER-a) that is encoded by distinct transcripts and that is able to repress hER-a activation function 1. EMBO J 19: 4688–4700PubMedGoogle Scholar
  90. 90.
    Saunders PT, Millar MR, Williams K, Macpherson S, Harkiss D, Anderson RA, Orr B, Groome NP, Scobie G, Fraser HM (2000) Differential expression of estrogen receptor-a and-b and androgen receptor in the ovaries of marmosets and humans. Biol Reprod 63: 1098–1105PubMedGoogle Scholar
  91. 91.
    Gruber CJ, Gruber DM, Gruber IM,Wieser F, Huber JC (2004) Anatomy of the estrogen response element. Trends Endocrinol Metab 15: 73–78PubMedGoogle Scholar
  92. 92.
    Couse JF, Korach KS (1999) Estrogen receptor null mice: What have we learned and where will they lead us? Endocr Rev 20: 358–417PubMedGoogle Scholar
  93. 93.
    Hewitt SC, Harrell JC, Korach KS (2005) Lessons in estrogen biology from knockout and transgenic animals. Annu Rev Physiol 67: 285–308PubMedGoogle Scholar
  94. 94.
    Harris HA (2007) Estrogen receptor-b: Recent lessons from in vivo studies. Mol Endocrinol 21: 1–13PubMedGoogle Scholar
  95. 95.
    Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse 322 J. Rüegg et al. estrogen receptor gene. Proc Natl Acad Sci USA 90: 11162–11166PubMedGoogle Scholar
  96. 96.
    Krege JH, Hodgin JB, Couse JF, Enmark E,Warner M, Mahler JF, Sar M, Korach KS, Gustafsson JA, Smithies O (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor b. Proc Natl Acad Sci USA 95: 15677–15682PubMedGoogle Scholar
  97. 97.
    Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M (2000) Effect of single and compound knockouts of estrogen receptors a (ERa) and b (ERb) on mouse reproductive phenotypes. Development 127: 4277–4291PubMedGoogle Scholar
  98. 98.
    Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox D, Hodgin J, Shaul PW, Thoren P, Smithies O, Gustafsson JA, Mendelsohn ME (2002) Abnormal vascular function and hypertension in mice deficient in estrogen receptor b. Science 295: 505–508PubMedGoogle Scholar
  99. 99.
    Imamov O, Morani A, Shim GJ, Omoto Y, Thulin-Andersson C,Warner M, Gustafsson JA (2004) Estrogen receptor b regulates epithelial cellular differentiation in the mouse ventral prostate. Proc Natl Acad Sci USA 101: 9375–9380PubMedGoogle Scholar
  100. 100.
    Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, Warner M, Gustafsson JA (2006) Role of estrogen receptor b in colonic epithelium. Proc Natl Acad Sci USA 103: 2959–2964PubMedGoogle Scholar
  101. 101.
    Krezel W, Dupont S, Krust A, Chambon P, Chapman PF (2001) Increased anxiety and synaptic plasticity in estrogen receptor b-deficient mice. Proc Natl Acad Sci USA 98: 12278–12282PubMedGoogle Scholar
  102. 102.
    Imwalle DB, Gustafsson JA, Rissman EF (2005) Lack of functional estrogen receptor b influences anxiety behavior and serotonin content in female mice. Physiol Behav 84: 157–163PubMedGoogle Scholar
  103. 103.
    Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM, Price RH Jr, Pestell RG, Kushner PJ (2002) Opposing action of estrogen receptors a and b on cyclin D1 gene expression. J Biol Chem 277: 24353–24360PubMedGoogle Scholar
  104. 104.
    Matthews J, Gustafsson JA (2003) Estrogen signaling: A subtle balance between ER a and ER b. Mol Interv 3: 281–292PubMedGoogle Scholar
  105. 105.
    Wilson CM, McPhaul MJ (1994) A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA 91: 1234–1238PubMedGoogle Scholar
  106. 106.
    Takeda H, Chodak G, Mutchnik S, Nakamoto T, Chang C (1990) Immunohistochemical localization of androgen receptors with mono-and polyclonal antibodies to androgen receptor. J Endocrinol 126: 17–25PubMedGoogle Scholar
  107. 107.
    Wilson CM, McPhaul MJ (1996) A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 120: 51–57PubMedGoogle Scholar
  108. 108.
    Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16: 2181–2187PubMedGoogle Scholar
  109. 109.
    Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097–1142PubMedGoogle Scholar
  110. 110.
    Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J (1997) Identification of transcripts initiated from an internal promoter in the c-erbA a locus that encode inhibitors of retinoic acid receptor-a and triiodothyronine receptor activities. Mol Endocrinol 11: 1278–1290PubMedGoogle Scholar
  111. 111.
    Plateroti M, Gauthier K, Domon-Dell C, Freund JN, Samarut J, Chassande O (2001) Functional interference between thyroid hormone receptor a (TRa) and natural truncated TRda isoforms in the control of intestine development. Mol Cell Biol 21: 4761–4772PubMedGoogle Scholar
  112. 112.
    Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM (2006) Environmental chemicals and thyroid function. Eur J Endocrinol 154: 599–611PubMedGoogle Scholar
  113. 113.
    Bassett JH, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213: 1–11PubMedGoogle Scholar
  114. 114.
    Li X, Lonard DM, O’Malley BW (2004) A contemporary understanding of progesterone receptor function. Mech Ageing Dev 125: 669–678PubMedGoogle Scholar
  115. 115.
    Bentrem D, Fox JE, Pearce ST, Liu H, Pappas S, Kupfer D, Zapf JW, Jordan VC (2003) Distinct molecular conformations of the estrogen receptor a complex exploited by environmental estrogens. Cancer Res 63: 7490–7496PubMedGoogle Scholar
  116. 116.
    Nagel SC, Hagelbarger JL, McDonnell DP (2001) Development of an ER action indicator mouse for the study of estrogens, selective ER modulators (SERMs), and xenobiotics. Endocrinology 142: 4721–4728PubMedGoogle Scholar
  117. 117.
    Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: From concept to therapeutic targeting. Mol Interv 5: 343–357PubMedGoogle Scholar
  118. 118.
    Hestermann EV, Brown M (2003) Agonist and chemopreventative ligands induce differential Receptors mediating toxicity and their involvement in endocrine disruption 323 transcriptional cofactor recruitment by aryl hydrocarbon receptor. Mol Cell Biol 23: 7920–7925PubMedGoogle Scholar
  119. 119.
    Safe S, Wormke M (2003) Inhibitory aryl hydrocarbon receptor-estrogen receptor a cross-talk and mechanisms of action. Chem Res Toxicol 16: 807–816PubMedGoogle Scholar
  120. 120.
    Safe S,Wormke M, Samudio I (2000) Mechanisms of inhibitory aryl hydrocarbon receptor-estrogen receptor crosstalk in human breast cancer cells. J Mammary Gland Biol Neoplasia 5: 295–306PubMedGoogle Scholar
  121. 121.
    Brunnberg S, Pettersson K, Rydin E, Matthews J, Hanberg A, Pongratz I (2003) The basic helixloop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription. Proc Natl Acad Sci USA 100: 6517–6522PubMedGoogle Scholar
  122. 122.
    Ruegg J, Swedenborg E, Wahlström D, Escande A, Balaguer P, Pettersson K, Pongratz I (2008) The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor b-selective co-activator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin. Mol Endocrinol 22: 304–316PubMedGoogle Scholar
  123. 123.
    Min G, Kim H, Bae Y, Petz L, Kemper JK (2002) Inhibitory cross-talk between estrogen receptor (ER) and constitutively activated androstane receptor (CAR). CAR inhibits ER-mediated signaling pathway by squelching p160 coactivators. J Biol Chem 277: 34626–34633PubMedGoogle Scholar
  124. 124.
    Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227: 115–124PubMedGoogle Scholar
  125. 125.
    Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 64: 3119–3125PubMedGoogle Scholar
  126. 126.
    You L (2004) Steroid hormone biotransformation and xenobiotic induction of hepatic steroid metabolizing enzymes. Chem Biol Interact 147: 233–246PubMedGoogle Scholar
  127. 127.
    Porter W, Wang F, Duan R, Qin C, Castro-Rivera E, Kim K, Safe S (2001) Transcriptional activation of heat shock protein 27 gene expression by 17b-estradiol and modulation by antiestrogens and aryl hydrocarbon receptor agonists. J Mol Endocrinol 26: 31–42PubMedGoogle Scholar
  128. 128.
    Wang F, Samudio I, Safe S (2001) Transcriptional activation of cathepsin D gene expression by 17b-estradiol: Mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol Cell Endocrinol 172: 91–103PubMedGoogle Scholar
  129. 129.
    Gillesby BE, Stanostefano M, Porter W, Safe S,Wu ZF, Zacharewski TR (1997) Identification of a motif within the 5’ regulatory region of pS2 which is responsible for AP-1 binding and TCDDmediated suppression. Biochemistry 36: 6080–6089PubMedGoogle Scholar
  130. 130.
    Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF (2006) The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 66: 2224–2232PubMedGoogle Scholar
  131. 131.
    Lin HK, Altuwaijri S, Lin WJ, Kan PY, Collins LL, Chang C (2002) Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem 277: 36570–36576PubMedGoogle Scholar
  132. 132.
    Deroo BJ, Rentsch C, Sampath S, Young J, DeFranco DB, Archer TK (2002) Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol 22: 4113–4123PubMedGoogle Scholar
  133. 133.
    Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-a is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276: 35684–35692PubMedGoogle Scholar
  134. 134.
    Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T et al (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446: 562–566PubMedGoogle Scholar
  135. 135.
    Wang X, Porter W, Krishnan V, Narasimhan TR, Safe S (1993) Mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated decrease of the nuclear estrogen receptor in MCF-7 human breast cancer cells. Mol Cell Endocrinol 96: 159–166PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Joëlle Rüegg
    • 1
  • Pauliina Penttinen-Damdimopoulou
    • 2
  • Sari Mäkelä
    • 1
  • Ingemar Pongratz
    • 2
  • Jan-Åke Gustafsson
    • 1
  1. 1.Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
  2. 2.Functional Foods Forum & The Department of Biochemistry and Food ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations