Samples isolated by flow cytometry

  • Victor Appay
  • Martin Larsen
Part of the Progress in Inflammation Research book series (PIR)


In recent years, important technological developments have provided new means to study fundamental aspects in biology and pathology. The emergence of DNA microarray technology enables us to analyze the expression levels of thousands of genes within cells, and to explore the underlying genetic causes of many human diseases. Moreover, the development of global PCR techniques now enables 1 to 10 million fold mRNA amplifications, and therefore microarray analysis from limited biological materials. Fluorescence Activated Cell Sorting (FACS) offers us the opportunity to separate cell populations according to their phenotypic or physical attributes, including rare cell types from heterogeneous mixtures, and to purify these for further characterization. In this chapter we discuss the possibility of combining these major technological advances in order to perform gene expression profiling on isolated cells of interest. The synergy of FACS and microarray technologies is bound to further our capacity to unveil the secrets of life.


Fluorescence Activate Cell Sort Perform Gene Expression Density Gradient Separation mRNA Amplification Subset Accord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hulett, H.R, W.A. Bonner, J. Barrett, L.A. Herzenberg. 1969. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166: 747–749PubMedCrossRefGoogle Scholar
  2. 2.
    Givan, A. 2001. Flow Cytometry: First Principles. Wiley-Liss, New YorkCrossRefGoogle Scholar
  3. 3.
    Shapiro, H.M. 2003. Practical Flow Cytometry, 4th edition. Wiley-Liss, HobokenGoogle Scholar
  4. 4.
    Perfetto, S.P, P.K. Chattopadhyay, M. Roederer. 2004. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4: 648–655Google Scholar
  5. 5.
    Chattopadhyay, P.K, D.A. Price, T.F. Harper, M.R. Betts, J. Yu, E. Gostick, S.P. Perfetto, P. Goepfert, R.A. Koup, S.C. De Rosa et al. 2006. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12: 972–977PubMedCrossRefGoogle Scholar
  6. 6.
    Davies, K.E, B.D. Young, R.G. Elles, M.E. Hill, R. Williamson. 1981. Cloning of a representative genomic library of the human x chromosome after sorting by flow cytometry. Nature 293: 374–376PubMedCrossRefGoogle Scholar
  7. 7.
    Altman, J.D, P.A.H. Moss, P.J.R. Goulder, D.H. Barouch, M.G. McHeyzer-Williams, J.I. Bell, A.J. McMichael, M.M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes [published erratum appears in Science 1998 Jun 19; 280 (5371): 1821]. Science 274: 94–96PubMedCrossRefGoogle Scholar
  8. 8.
    Ogg, G.S, X. Jin, S. Bonhoeffer, P.R. Dunbar, M.A. Nowak, S. Monard, J.P. Segal, Y. Cao, S.L. Rowland-Jones, V. Cerundolo et al. 1998. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279: 2103–2106PubMedCrossRefGoogle Scholar
  9. 9.
    Romero, P, P.R. Dunbar, D. Valmori, M. Pittet, G.S. Ogg, D. Rimoldi, J.L. Chen, D. Lienard, J.C. Cerottini, V. Cerundolo. 1998. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188: 1641–1650PubMedCrossRefGoogle Scholar
  10. 10.
    van Lier, R.A, I.J. ten Berge, L.E. Gamadia. 2003. Human CD8(+) T-cell differentiation in response to viruses. Nat Rev Immunol 3: 931–939PubMedCrossRefGoogle Scholar
  11. 11.
    Appay, V, S.L. Rowland-Jones. 2004. Lessons from the study of T-cell differentiation in persistent human virus infection. Semin Immunol 16: 205–212PubMedCrossRefGoogle Scholar
  12. 12.
    Herzenberg, L.A. and S.C. De Rosa. 2000. Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immunol Today 21: 383–390PubMedCrossRefGoogle Scholar
  13. 13.
    Miyara, M, Z. Amoura, C. Parizot, C. Badoual, K. Dorgham, S. Trad, M. Kambouchner, D. Valeyre, C. Chapelon-Abric, P. Debre et al. 2006. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 203: 359–370PubMedCrossRefGoogle Scholar
  14. 14.
    Li, Y, K.K. Wong, S. Matsueda, C.L. Efferson, D.Z. Chang, C.G. Ioannides, N. Tsuda. 2006. Mitogen stimulation activates different signaling pathways in early-and late-divided T cells as revealed by cDNA microarray analysis. Int J Mol Med 18: 1127–1139PubMedGoogle Scholar
  15. 15.
    Tanaka, Y, H. Ohdan, T. Onoe, T. Asahara. 2004. Multiparameter flow cytometric approach for simultaneous evaluation of proliferation and cytokine-secreting activity in T cells responding to allo-stimulation. Immunol Invest 33: 309–324PubMedCrossRefGoogle Scholar
  16. 16.
    Kawaguchi, A, T. Miyata, K. Sawamoto, N. Takashita, A. Murayama, W. Akamatsu, M. Ogawa, M. Okabe, Y. Tano, S.A. Goldman, H. Okano. 2001. Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 17: 259–273PubMedCrossRefGoogle Scholar
  17. 17.
    Maric, D, J.L. Barker. 2004. Neural stem cells redefined: a FACS perspective. Mol Neurobiol 30: 49–76PubMedCrossRefGoogle Scholar
  18. 18.
    Willinger, T, T. Freeman, H. Hasegawa, A.J. McMichael, M.F. Callan. 2005. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol 175: 5895–5903PubMedGoogle Scholar
  19. 19.
    Holmes, S, M. He, T. Xu, and P.P. Lee. 2005. Memory T cells have gene expression patterns intermediate between naive and effector. Proc Natl Acad Sci USA 102: 5519–5523PubMedCrossRefGoogle Scholar
  20. 20.
    Boutboul, F, D. Puthier, V. Appay, O. Pelle, H. Ait-Mohand, B. Combadiere, G. Carcelain, C. Katlama, S.L. Rowland-Jones, P. Debre et al. 2005. Modulation of interleukin-7 receptor expression characterizes differentiation of CD8 T cells specific for HIV, EBV and CMV. Aids 19: 1981–1986PubMedCrossRefGoogle Scholar
  21. 21.
    Menzel, O, M. Migliaccio, D.R. Goldstein, S. Dahoun, M. Delorenzi, N. Rufer. 2006. Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes over-expressing telomerase. J Immunol 177: 3657–3668PubMedGoogle Scholar
  22. 22.
    Iscove, N.N, M. Barbara, M. Gu, M. Gibson, C. Modi, N. Winegarden. 2002. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20: 940–943PubMedCrossRefGoogle Scholar
  23. 23.
    Smith, L, P. Underhill, C. Pritchard, Z. Tymowska-Lalanne, S. Abdul-Hussein, H. Hilton, L. Winchester, D. Williams, T. Freeman, S. Webb, A. Greenfield. 2003. Single primer amplification (SPA) of cDNA for microarray expression analysis. Nucleic Acids Res 31:e9PubMedCrossRefGoogle Scholar
  24. 24.
    Hartmann, B, F. Staedtler, N. Hartmann, J. Meingassner, H. Firat. 2006. Gene expression profiling of skin and draining lymph nodes of rats affected with cutaneous contact hypersensitivity. Inflamm Res 55: 322–334PubMedCrossRefGoogle Scholar
  25. 25.
    Jensen, K.B, and F.M. Watt. 2006. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci USA 103:11958–11963PubMedCrossRefGoogle Scholar
  26. 26.
    Appay, V, A. Bosio, S. Lokan, Y. Wiencek, C. Biervert, D. Kusters, D. Devevre, D.E. Speiser, P. Romero, N. Rufer, S. Leyvraz. 2007. Sensitive gene expression profiling of human T-cell subsets reveals parallel post-thymic differentiation for CD4+ and CD8+ lineages. J Immunol; in pressGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Victor Appay
    • 1
  • Martin Larsen
    • 1
  1. 1.Immunologie Cellulaire et Tissulaire, INSERM U543, Faculté de Mé decineHôpital PitiéSalpêtrièreParis Cedex 13France

Personalised recommendations