Whole blood

  • Birgit Sawitzki
  • Hans-Dieter Volk
Part of the Progress in Inflammation Research book series (PIR)


Within this chapter we summarize the multiple approaches to transcriptional profiling of peripheral blood cells, including the description and characterization of various methodologies. Additionally, we will highlight the advantages and potential pitfalls of these methodologies, especially with regard to application in multi-center clinical trials. Although gene expression profiling after instant whole blood stabilization appears to be superior to expression analysis of isolated cell populations, differences in blood leukocyte composition, high globin RNA content and genomic DNA contamination may affect the results. Thus, the choice of the peripheral blood collection and preparation method must be based on theoretical and practical concerns.


Potential Pitfall Cardiac Allograft Interferon Signature Blood Stabilization Stabilization Reagent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burczynski, M.E. et al. Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 7, 187–202 (2006)PubMedCrossRefGoogle Scholar
  2. 2.
    Whitney, A.R. et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA 100, 1896–901 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    Liew, C.C. et al. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147, 126–32 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    Batliwalla, F.M. et al. Microarray analyses of peripheral blood cells identifies unique gene expression signature in psoriatic arthritis. Mol Med 11, 21–9 (2005)PubMedCrossRefGoogle Scholar
  5. 5.
    van derPouw Kraan, T.C. et al. Expression of a pathogen-response program in peripheral blood cells defines a subgroup of Rheumatoid Arthritis patients. Genes Immun 9, 16–22 (2007)PubMedCrossRefGoogle Scholar
  6. 6.
    Edwards, C.J. et al. Molecular profile of peripheral blood mononuclear cells from patients with rheumatoid arthritis. Mol Med 13, 40–58 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    Ogilvie, E.M. et al. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum 56, 1954–65 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    Alcorta, D.A. et al. Leukocyte gene expression signatures in antineutrophil cytoplasmic autoantibody and lupus glomerulonephritis. Kidney Int 72, 853–64 (2007)PubMedCrossRefGoogle Scholar
  9. 9.
    Sood, R. et al. Gene expression profile of idiopathic thrombocytopenic purpura (ITP) Pediatr Blood Cancer 47, 675–7 (2006)PubMedCrossRefGoogle Scholar
  10. 10.
    Gilli, F. et al. Biological markers of interferon-beta therapy: comparison among inter-feron-stimulated genes MxA, TRAIL and XAF-1. Mult Scler 12, 47–57 (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    Gilli, F. et al. Qualitative and quantitative analysis of antibody response against IFNbeta in patients with multiple sclerosis. Mult Scler 12, 738–46 (2006)PubMedCrossRefGoogle Scholar
  12. 12.
    Achiron, A. et al. Peripheral blood gene expression signature mirrors central nervous system disease: the model of multiple sclerosis. Autoimmun Rev 5, 517–22 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    Achiron, A. et al. Impaired expression of peripheral blood apoptotic-related gene transcripts in acute multiple sclerosis relapse. Ann NY Acad Sci 1107, 155–67 (2007)PubMedCrossRefGoogle Scholar
  14. 14.
    Fossey, S.C. et al. Identification of molecular biomarkers for multiple sclerosis. Mol Diagn 9, 197–204 (2007)CrossRefGoogle Scholar
  15. 15.
    Singh, M.K. et al. Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing beta-interferon therapy. Neurol Sci 258, 52–9 (2007)CrossRefGoogle Scholar
  16. 16.
    Burczynski, M.E. et al. Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. Mol Diagn 8, 51–61 (2006)CrossRefGoogle Scholar
  17. 17.
    Fjaerli, H.O. et al. Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis. BMC Infect Dis 6, 175 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    Mistry, R. et al. Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis. J Infect Dis 195, 357–65 (2007)PubMedCrossRefGoogle Scholar
  19. 19.
    Wiersinga, W.J. et al. High-throughput mRNA profiling characterizes the expression of inflammatory molecules in sepsis caused by Burkholderia pseudomallei. Infect Immun 75, 3074–9 (2007)CrossRefGoogle Scholar
  20. 20.
    Jacobsen, M. et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med 85, 613–21 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    Lempicki, R.A. et al. Gene expression profiles in hepatitis C virus (HCV) and HIV coinfection: class prediction analyses before treatment predict the outcome of anti-HCV therapy among HIV-coinfected persons. J Infect Dis 193, 1172–7 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    Kawada, J. et al. Analysis of gene-expression profiles by oligonucleotide microarray in children with influenza. J Gen Virol 87, 1677–83 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Prezeau, N. et al. Assessment of a new RNA stabilizing reagent (Tempus Blood RNA) for minimal residual disease in onco-hematology using the EAC protocol. Leuk Res 30, 569–74 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Thorn, I. et al. The impact of RNA stabilization on minimal residual disease assessment in chronic myeloid leukemia. Haematologica 90, 1471–6 (2005)PubMedGoogle Scholar
  25. 25.
    Sakhinia, E. et al. Comparison of gene-expression profiles in parallel bone marrow and peripheral blood samples in acute myeloid leukaemia by real-time polymerase chain reaction. J Clin Pathol 59, 1059–65 (2006)PubMedCrossRefGoogle Scholar
  26. 26.
    Twine, N.C. et al. Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res 63, 6069–75 (2003)PubMedGoogle Scholar
  27. 27.
    Burczynski, M.E. et al. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res 11, 1181–9 (2005)PubMedGoogle Scholar
  28. 28.
    Alakulppi, N.S. et al. Diagnosis of acute renal allograft rejection by analyzing whole blood mRNA expression of lymphocyte marker molecules. Transplantation 83, 791–8 (2007)PubMedCrossRefGoogle Scholar
  29. 29.
    Sawitzki, B. et al. Identification of gene markers for the prediction of allograft rejection or permanent acceptance. Am J Transplant 7, 1091–102 (2007)PubMedCrossRefGoogle Scholar
  30. 30.
    Brouard, S. et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci USA 104, 15448–53 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    Deng, M.C. et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. AmJ Transplant 6, 150–60 (2006)CrossRefGoogle Scholar
  32. 32.
    Martinez-Llordella, M. et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 7, 309–19 (2007)PubMedCrossRefGoogle Scholar
  33. 33.
    Marteau, J.B. et al. Genetic determinants of blood pressure regulation. J Hypertens 23, 2127–43 (2005)PubMedCrossRefGoogle Scholar
  34. 34.
    Timofeeva, A.V. et al. Altered gene expression pattern in peripheral blood leukocytes from patients with arterial hypertension. Ann NY Acad Sci 1091, 319–35 (2006)PubMedCrossRefGoogle Scholar
  35. 35.
    Baird, A.E. Blood genomic profiling: novel diagnostic and therapeutic strategies for stroke? Biochem Soc Trans 34, 1313–7 (2006)Google Scholar
  36. 36.
    Baird, A.E. Blood genomics in human stroke. Stroke 38, 694–8 (2007)Google Scholar
  37. 37.
    Moore, D.F. et al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation 111, 212–21 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    Scherzer, C.R. et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc Natl Acad Sci USA 104, 955–60 (2007)PubMedCrossRefGoogle Scholar
  39. 39.
    Stordeur, P. et al. Immune monitoring in whole blood using real-time PCR. J Immunol Methods 276, 69–77 (2003)PubMedCrossRefGoogle Scholar
  40. 40.
    Talwar, S. et al. Gene expression profiles of peripheral blood leukocytes after endotoxin challenge in humans. Physiol Genomics 25, 203–15 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Fannin, R.D. et al. Differential gene expression profiling in whole blood during acute systemic inflammation in lipopolysaccharide-treated rats. Physiol Genomics 21, 92–104 (2005)PubMedCrossRefGoogle Scholar
  42. 42.
    Calvano, S.E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–7 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    Brownstein, B.H. et al. Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiol Genomics 24, 298–309 (2006)PubMedGoogle Scholar
  44. 44.
    Hakonarson, H. et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Natl Acad Sci USA 102, 14789–94 (2005)PubMedCrossRefGoogle Scholar
  45. 45.
    Potti, A. et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med 12, 1294–300 (2006)PubMedCrossRefGoogle Scholar
  46. 46.
    Lequerre, T. et al. Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther 8, R105 (2006)PubMedCrossRefGoogle Scholar
  47. 47.
    Rokutan, K. et al. Gene expression profiling in peripheral blood leukocytes as a new approach for assessment of human stress response. J Med Invest 52, 137–44 (2005)PubMedCrossRefGoogle Scholar
  48. 48.
    Buttner, P. et al. Exercise affects the gene expression profiles of human white blood cells. / Appl Physiol 102, 26–36 (2007)CrossRefGoogle Scholar
  49. 49.
    Haider, A.S. et al. Novel insight into the agonistic mechanism of alefacept in vivo: differentially expressed genes may serve as biomarkers of response in psoriasis patients. J Immunol 178, 7442–9 (2007)PubMedGoogle Scholar
  50. 50.
    Hagberg, A. et al. Gene expression analysis identifies a genetic signature potentially associated with response to alpha-IFN in chronic phase C ml patients. Leuk Res 31, 931–8 (2007)PubMedCrossRefGoogle Scholar
  51. 51.
    Lyons, P.A. et al. Microarray analysis of human leukocyte subsets: the advantages of positive selection and rapid purification. BMC Genomics 8, 64 (2007)PubMedCrossRefGoogle Scholar
  52. 52.
    Tang, Y. et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26, 1089–102 (2006)PubMedCrossRefGoogle Scholar
  53. 53.
    Du, X. et al. Genomic profiles for human peripheral blood T cells, B cells, natural killer cells, monocytes, and polymorphonuclear cells: comparisons to ischemic stroke, migraine, and Tourette syndrome. Genomics 87, 693–703 (2006)PubMedCrossRefGoogle Scholar
  54. 54.
    Rainen, L. et al. Stabilization of mRNA expression in whole blood samples. Clin Chem 48, 1883–90 (2002)PubMedGoogle Scholar
  55. 55.
    Chai, V. et al. Optimization of the PAXgene blood RNA extraction system for gene expression analysis of clinical samples. J Clin Lab Anal 19, 182–8 (2005)PubMedCrossRefGoogle Scholar
  56. 56.
    Hartel, C. et al. Ex vivo induction of cytokine mRNA expression in human blood samples. J Immunol Methods 249, 63–71 (2001)PubMedCrossRefGoogle Scholar
  57. 57.
    Potti, A. et al. Gene-expression patterns predict phenotypes of immune-mediated thrombosis. Blood 107, 1391–6 (2006)PubMedCrossRefGoogle Scholar
  58. 58.
    Wang, Y. et al. Gene expression signature in peripheral blood detects thoracic aortic aneurysm. PLoS ONE 2, e1050 (2007)PubMedCrossRefGoogle Scholar
  59. 59.
    Shou, J. et al. Optimized blood cell profiling method for genomic biomarker discovery using high-density microarray. Biomarkers 10, 310–20 (2005)PubMedCrossRefGoogle Scholar
  60. 60.
    Debey, S. et al. A highly standardized, robust, and cost-effective method for genomewide transcriptome analysis of peripheral blood applicable to large-scale clinical trials. Genomics 87, 653–64 (2006)PubMedCrossRefGoogle Scholar
  61. 61.
    Field, L.A. et al. Functional identity of genes detectable in expression profiling assays following globin mRNA reduction of peripheral blood samples. Clin Biochem 40, 499–502 (2007)PubMedCrossRefGoogle Scholar
  62. 62.
    Ovstebo, R. et al. Quantification of relative changes in specific mRNAs from frozen whole blood — methodological considerations and clinical implications. Clin Chem Lab Med 45, 171–6 (2007)PubMedCrossRefGoogle Scholar
  63. 63.
    Kagedal, B. et al. Failure of the PAXgene Blood RNA System to maintain mRNA stability in whole blood. Clin Chem Lab Med 43, 1190–2 (2005)PubMedCrossRefGoogle Scholar
  64. 64.
    Kim, S.J. et al. Effects of storage, RNA extraction, genechip type, and donor sex on gene expression profiling of human whole blood. Clin Chem 53, 1038–45 (2007)PubMedCrossRefGoogle Scholar
  65. 65.
    Feezor, R.J. et al. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics 19, 247–54 (2004)PubMedCrossRefGoogle Scholar
  66. 66.
    Liu, J.et al. Effects of globin mRNA reduction methods on gene expression profiles from whole blood. J Mol Diagn 8, 551–8 (2006)PubMedCrossRefGoogle Scholar
  67. 67.
    McPhail, S. et al. Overcoming challenges of using blood samples with gene expression microarrays to advance patient stratification in clinical trials. Drug Discov Today 10, 1485–7 (2005)PubMedCrossRefGoogle Scholar
  68. 68.
    Fan, H. et al. The transcriptome in blood: challenges and solutions for robust expression profiling. Curr Mol Med 5, 3–10 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Birgit Sawitzki
    • 1
  • Hans-Dieter Volk
    • 1
  1. 1.Institute of Medical ImmunologyCharité — Universitätsmedizin BerlinBerlinGermany

Personalised recommendations