Aspects of gene expression in B cell lymphomas

  • Enrico Tiacci
  • Verena Brune
  • Ralf Küppers
Part of the Progress in Inflammation Research book series (PIR)


Gene expression profiling has been used extensively for the analysis of human lymphomas. Besides the analysis of whole tissue or blood samples, genechip studies have also been applied to lymphoma cells isolated by cell sorting from cell suspensions or by laser microdissection from tissue sections. Such studies were successfully applied to clarify the cellular origin of lymphomas by comparison to normal B cell subsets, to gain insights into pathogenetic mechanisms, to develop molecular classifiers for differential diagnosis, to identify so far unrecognized subgroups among current lymphoma entities, and to establish predictors of prognosis. In our own work, we initially studied gene expression of Hodgkin lymphoma cell lines and revealed, for example, a global downregulation of the B cell gene expression programme and an aberrant expression of multiple receptor tyrosine kinases in these cells. We are now studying gene expression profiles from microdissected tumour cells of Hodgkin lymphoma.


Hodgkin Lymphoma Mantle Cell Lymphoma Random HEXAMER Primer Laser Microdissection Diffuse Large 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, Raffeld M (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154: 61–66PubMedGoogle Scholar
  2. 2.
    Fend F, Raffeld M (2000) Laser capture microdissection in pathology. J Clin Pathol 53: 666–672PubMedCrossRefGoogle Scholar
  3. 3.
    Fink L, Kinfe T, Seeger W, Ermert L, Kummer W, Bohle RM (2000) Immunostaining for cell picking and real-time mRNA quantitation. Am J Pathol 157: 1459–1466PubMedGoogle Scholar
  4. 4.
    Fink L, Kinfe T, Stein MM, Ermert L, Hanze J, Kummer W, Seeger W, Bohle RM (2000) Immunostaining and laser-assisted cell picking for mRNA analysis. Lab Invest 80: 327–333PubMedGoogle Scholar
  5. 5.
    Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351: 2159–2169PubMedCrossRefGoogle Scholar
  6. 6.
    Küppers R, Zhao M, Hansmann ML, Rajewsky K (1993) Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 12: 4955–4967PubMedGoogle Scholar
  7. 7.
    Kenzelmann M, Klaren R, Hergenhahn M, Bonrouhi M, Grone HJ, Schmid W, Schutz G (2004) High-accuracy amplification of nanogram total RNA amounts for gene profiling. Genomics 83: 550–558PubMedCrossRefGoogle Scholar
  8. 8.
    Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, Xiao H, Rogers KE, Wan JS, Jackson MR et al (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5: 117–122PubMedCrossRefGoogle Scholar
  9. 9.
    Luzzi V, Holtschlag V, Watson MA (2001) Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol 158: 2005–2010PubMedGoogle Scholar
  10. 10.
    Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn 5: 9–14PubMedGoogle Scholar
  11. 11.
    McClintick JN, Jerome RE, Nicholson CR, Crabb DW, Edenberg HJ (2003) Reproducibility of oligonucleotide arrays using small samples. BMC Genomics 4: 4PubMedCrossRefGoogle Scholar
  12. 12.
    Ohyama H, Zhang X, Kohno Y, Alevizos I, Posner M, Wong DT, Todd R (2000) Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29: 530–536PubMedGoogle Scholar
  13. 13.
    Wilson CL, Pepper SD, Hey Y, Miller CJ (2004) Amplification protocols introduce systematic but reproducible errors into gene expression studies. Biotechniques 36: 498–506PubMedGoogle Scholar
  14. 14.
    Frank M, Döring C, Metzler D, Eckerle S, Hansmann ML (2007) Global gene expression profiling of formalin-fixed paraffin-embedded tumor samples: a comparison to snap-frozen material using oligonucleotide microarrays. Virchows Arch 450: 699–711PubMedCrossRefGoogle Scholar
  15. 15.
    Hartmann CH, Klein CA (2006) Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res 34: e143PubMedCrossRefGoogle Scholar
  16. 16.
    Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34: e42PubMedCrossRefGoogle Scholar
  17. 17.
    Dafforn A, Chen P, Deng G, Herrler M, Iglehart D, Koritala S, Lato S, Pillarisetty S, Purohit R, Wang M et al (2004) Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 37: 854–857PubMedGoogle Scholar
  18. 18.
    Singh R, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, Kurn N, Wangemann P (2005) Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. Am J Physiol Cell Physiol 288: C1179–1189PubMedCrossRefGoogle Scholar
  19. 19.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu × et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937–1947PubMedCrossRefGoogle Scholar
  21. 21.
    Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kap-paB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells.J Exp Med 194: 1861–1874PubMedCrossRefGoogle Scholar
  22. 22.
    Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8: 68–74PubMedCrossRefGoogle Scholar
  23. 23.
    Robertson MJ, Kahl BS, Vose JM, de Vos S, Laughlin M, Flynn PJ, Rowland K, Cruz JC, Goldberg SL, Musib L et al (2007) Phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 25: 1741–1746PubMedCrossRefGoogle Scholar
  24. 24.
    Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu B, Pasqualucci L, Neuberg D, Aguiar RC et al (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105: 1851–1861PubMedCrossRefGoogle Scholar
  25. 25.
    Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442PubMedCrossRefGoogle Scholar
  26. 26.
    Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354: 2419–2430PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, Gascoyne RD, GroganTM, Müller-Hermelink HK, Smeland EB et al (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3: 185–197PubMedCrossRefGoogle Scholar
  28. 28.
    Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102: 2951–2959PubMedCrossRefGoogle Scholar
  29. 29.
    Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143PubMedCrossRefGoogle Scholar
  30. 30.
    Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B et al (2006) The molecular classification of multiple myeloma. Blood 108: 2020–2028PubMedCrossRefGoogle Scholar
  31. 31.
    Basso K, Liso A, Tiacci E, Benedetti R, Pulsoni A, Foa R, Di Raimondo F, Ambrosetti A, Califano A, Klein U et al (2004) Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors. J Exp Med 199: 59–68PubMedCrossRefGoogle Scholar
  32. 32.
    Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L et al (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194: 1625–1638PubMedCrossRefGoogle Scholar
  33. 33.
    Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J et al (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194: 1639–1647PubMedCrossRefGoogle Scholar
  34. 34.
    Küppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5: 251–262PubMedCrossRefGoogle Scholar
  35. 35.
    Küppers R, Klein U, Hansmann M-L, Rajewsky K (1999) Cellular origin of human B-cell lymphomas. N Engl J Med 341: 1520–1529PubMedCrossRefGoogle Scholar
  36. 36.
    Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, Marce S, Lopez-Guillermo A, Campo E, Montserrat E (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348: 1764–1775PubMedCrossRefGoogle Scholar
  37. 37.
    Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC et al (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893–901PubMedCrossRefGoogle Scholar
  38. 38.
    Falini B, Tiacci E, Liso A, Basso K, Sabattini E, Pacini R, Foa R, Pulsoni A, Dalla Favera R, Pileri S (2004) Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin A1 (ANXA1). Lancet 363: 1869–1870PubMedCrossRefGoogle Scholar
  39. 39.
    Küppers R, Klein U, Schwering I, Distler V, Bräuninger A, Cattoretti G, Tu Y, Stolovitzky GA, Califano A, Hansmann ML et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111: 529–537PubMedGoogle Scholar
  40. 40.
    Renné C, Willenbrock K, Küppers R, Hansmann ML, Bräuninger A (2005) Autocrine and paracrine activated receptor tyrosine kinases in classical Hodgkin lymphoma. Blood 105: 4051–4059PubMedCrossRefGoogle Scholar
  41. 41.
    Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, Hansmann ML, Dalla-Favera R, Rajewsky K, Küppers R (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101: 1505–1512PubMedCrossRefGoogle Scholar
  42. 42.
    Küppers R (2002) Molecular biology of Hodgkin’s lymphoma. Adv Cancer Res 84: 277–312PubMedCrossRefGoogle Scholar
  43. 43.
    Küppers R, Bräuninger A (2006) Reprogramming of the tumour B-cell phenotype in Hodgkin lymphoma. Trends Immunol 27: 203–205PubMedCrossRefGoogle Scholar
  44. 44.
    Küppers R, Re D (2007) Nature of Reed-Sternberg and L&H cells, and their molecular biology in Hodgkin lymphoma. In: RT Hoppe, JO Armitage, V Diehl, PM Mauch, LM Weiss, (eds): Hodgkin lymphoma. Lippincott Williams & Wilkins, Philadelphia, 73–86Google Scholar
  45. 45.
    Lawrie CH (2007) MicroRNAs and haematology: small molecules, big function. Br J Haematol 137: 503–512PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, Chan WC, Zhao T, Haioun C, Greiner TC et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198: 851–862PubMedCrossRefGoogle Scholar
  47. 47.
    Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, Kurtin P, Dal Cin P, Ladd C, Feuerhake F et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102: 3871–3879PubMedCrossRefGoogle Scholar
  48. 48.
    Klein U, Gloghini A, Gaidano G, Chadburn A, Cesarman E, Dalla-Favera R, Carbone A (2003) Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood 101:4115–4121PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Enrico Tiacci
    • 1
  • Verena Brune
    • 1
    • 2
  • Ralf Küppers
    • 1
  1. 1.Institute for Cell Biology (Tumor Research)Medical School, University of Duisburg-EssenEssenGermany
  2. 2.Institute of PathologyUniversity of Frankfurt/MainFrankfurtGermany

Personalised recommendations