Immune modulation by CD40L blockade

  • Yuan Zhai
  • Jerzy W. Kupiec-Weglinski
Part of the Progress in Inflammation Research book series (PIR)


CD40L (CD154), a member of TNF-TNFR superfamily, binds to CD40 and several integrins, and plays the key role in host immune responses [1]. Blockade of the CD40-CD40L costimulation pathway has proven to be highly effective in modulating various types of immune responses, including anti-microbial, autoimmune, alloimmune responses, allergy, as well as tissue inflammation of both antigen-specific and nonspecific types. In particular, CD154 blockade has been widely applied in organ transplant models, from rodents to primates [2]. In this review, we focus on recent literature with emphasis on in vivo immunological mechanisms.


Allograft Rejection Transplantation Tolerance Costimulation Blockade CD154 Blockade CD40L Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16: 111–135PubMedCrossRefGoogle Scholar
  2. 2.
    Yamada A, Sayegh MH (2002) The CD154-CD40 costimulatory pathway in transplantation. Transplantation 73: S36–39CrossRefGoogle Scholar
  3. 3.
    Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, Anderson DM, Gimpel SD, Davis-Smith T, Maliszewski CR et al (1992) Molecular and biological characterization of a murine ligand for CD40. Nature 357: 80–82PubMedCrossRefGoogle Scholar
  4. 4.
    Ludewig B, Henn V, Schroder JM, Graf D, Kroczek RA (1996) Induction, regulation, and function of soluble TRAP (CD40 ligand) during interaction of primary CD4+ CD45RA+ T cells with dendritic cells. Eur J Immunol 26: 3137–3143PubMedCrossRefGoogle Scholar
  5. 5.
    Villa A, Notarangelo LD, Di Santo JP, Macchi PP, Strina D, Frattini A, Lucchini F, Patrosso CM, Giliani S, Mantuano E et al (1994) Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis. Proc Natl Acad Sci USA 91: 2110–2114PubMedCrossRefGoogle Scholar
  6. 6.
    Notarangelo LD, Peitsch MC (1996) CD40lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today 17: 511–516PubMedCrossRefGoogle Scholar
  7. 7.
    Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS Libby P (1997) Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 94: 1931–1936PubMedCrossRefGoogle Scholar
  8. 8.
    Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391: 591–594PubMedCrossRefGoogle Scholar
  9. 9.
    Stamenkovic I, Clark EA, Seed B (1989) A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 8: 1403–1410PubMedGoogle Scholar
  10. 10.
    Grimaldi JC, Torres R, Kozak CA, Chang R, Clark EA, Howard M, Cockayne DA (1992) Genomic structure and chromosomal mapping of the murine CD40 gene. J Immunol 149: 3921–3926PubMedGoogle Scholar
  11. 11.
    Yellin MJ, Brett J, Baum D, Matsushima A, Szabolcs M, Stern D, Chess L (1995) Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med 182: 1857–1864PubMedCrossRefGoogle Scholar
  12. 12.
    Krishnaswamy G, Lakshman T, Miller AR, Srikanth S, Hall K, Huang SK, Suttles J, Smith JK, Stout R (1997) Multifunctional cytokine expression by human mast cells: regulation by T cell membrane contact and glucocorticoids. J Interferon Cytokine Res 17: 167–176PubMedCrossRefGoogle Scholar
  13. 13.
    Yellin MJ, Winikoff S, Fortune SM, Baum D, Crow MK, Lederman S, Chess L (1995) Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) upregulation and IL-6 production and proliferation. J Leukoc Biol 58: 209–216PubMedGoogle Scholar
  14. 14.
    Lazaar AL, Amrani Y, Hsu J, Panettieri RA Jr, Fanslow WC, Albelda SM, Pure E (1998) CD40-mediated signal transduction in human airway smooth muscle. J Immunol 161: 3120–3127PubMedGoogle Scholar
  15. 15.
    Mehlhop PD, van de Rijn M, Brewer JP, Kisselgof AB, Geha RS, Oettgen HC, Martin TR (2000) CD40L, but not CD40, is required for allergen-induced bronchial hyperresponsiveness in mice. Am J Respir Cell Mol Biol 23: 646–651PubMedGoogle Scholar
  16. 16.
    Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD (2002) CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 8: 247–252PubMedCrossRefGoogle Scholar
  17. 17.
    Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR (2003) Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 100: 12367–12371PubMedCrossRefGoogle Scholar
  18. 18.
    Leveille C, Bouillon M, Guo W, Bolduc J, Sharif-Askari E, El-Fakhry Y, Reyes-Moreno C, Lapointe R, Merhi Y, Wilkins JA et al (2007) CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 282: 5143–5151PubMedCrossRefGoogle Scholar
  19. 19.
    Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, Ahrens I, Ernst S, Bassler N, Missiou A et al (2007) CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 115: 1571–1580PubMedCrossRefGoogle Scholar
  20. 20.
    Noelle RJ, Ledbetter JA Aruffo A (1992) CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol Today 13: 431–433PubMedCrossRefGoogle Scholar
  21. 21.
    Ramesh N, Fuleihan R, Geha R (1994) Molecular pathology of X-linked immunoglobulin deficiency with normal or elevated IgM (HIGMX-1). Immunol Rev 138: 87–104PubMedCrossRefGoogle Scholar
  22. 22.
    Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ (1996) Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 14: 591–617PubMedCrossRefGoogle Scholar
  23. 23.
    Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1: 167–178PubMedCrossRefGoogle Scholar
  24. 24.
    Renshaw BR, Fanslow WC 3rd, Armitage RJ, Campbell KA, Liggitt D, Wright B, Davison BL, Maliszewski CR (1994) Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 180: 1889–1900PubMedCrossRefGoogle Scholar
  25. 25.
    Rodriguez-Pinto D, Moreno J (2005) B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol 35: 1097–1105PubMedCrossRefGoogle Scholar
  26. 26.
    Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180: 1263–1272PubMedCrossRefGoogle Scholar
  27. 27.
    Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184: 747–752PubMedCrossRefGoogle Scholar
  28. 28.
    Hewitson JP, Hamblin PA, Mountford AP (2007) In the absence of CD154, administration of interleukin-12 restores Th1 responses but not protective immunity to Schistosoma mansoni. Infect Immun 75: 3539–3547PubMedCrossRefGoogle Scholar
  29. 29.
    van Essen D, Kikutani H, Gray D (1995) CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 378: 620–623PubMedCrossRefGoogle Scholar
  30. 30.
    Blotta MH, Marshall JD, DeKruyff RH, Umetsu DT (1996) Cross-linking of the CD40 ligand on human CD4+ T lymphocytes generates a costimulatory signal that up-regulates IL-4 synthesis. J Immunol 156: 3133–3140PubMedGoogle Scholar
  31. 31.
    Amrani A, Serra P, Yamanouchi J, Han B, Thiessen S, Verdaguer J, Santamaria P (2002) CD154-dependent priming of diabetogenic CD4(+) T cells dissociated from activation of antigen-presenting cells. Immunity 16: 719–732PubMedCrossRefGoogle Scholar
  32. 32.
    Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478–480PubMedCrossRefGoogle Scholar
  33. 33.
    Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480–483PubMedCrossRefGoogle Scholar
  34. 34.
    Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478PubMedCrossRefGoogle Scholar
  35. 35.
    Bourgeois C, Rocha B, Tanchot C (2002) A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297: 2060–2063PubMedCrossRefGoogle Scholar
  36. 36.
    Schonbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58: 4–43PubMedCrossRefGoogle Scholar
  37. 37.
    Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS (1995) CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci USA 92: 4342–4346PubMedCrossRefGoogle Scholar
  38. 38.
    Karmann K, Min W, Fanslow WC, Pober JS (1996) Activation and homologous desensitization of human endothelial cells by CD40 ligand, tumor necrosis factor, and interleukin 1. J Exp Med 184: 173–182PubMedCrossRefGoogle Scholar
  39. 39.
    Thienel U, Loike J, Yellin MJ (1999) CD154 (CD40L) induces human endothelial cell chemokine production and migration of leukocyte subsets. Cell Immunol 198: 87–95PubMedCrossRefGoogle Scholar
  40. 40.
    Xu H, Arnaud F, Tadaki DK, Burkly LC, Harlan DM, Kirk AD (2001) Human platelets activate porcine endothelial cells through a CD154-dependent pathway. Transplantation 72: 1858–1861PubMedCrossRefGoogle Scholar
  41. 41.
    Vowinkel T, Anthoni C, Wood KC, Stokes KY, Russell J, Gray L, Bharwani S, Senninger N, Alexander JS, Krieglstein CF et al (2007) CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. Gastroenterology 132: 955–965PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou F, Ajuebor MN, Beck PL, Le T, Hogaboam CM, Swain MG (2005) CD154-CD40 interactions drive hepatocyte apoptosis in murine fulminant hepatitis. Hepatology 42: 372–380PubMedCrossRefGoogle Scholar
  43. 43.
    Afford SC, Ahmed-Choudhury J, Randhawa S, Russell C, Youster J, Crosby HA, Eliopoulos A, Hubscher SG, Young LS, Adams DH (2001) CD40 activation-induced, Fas-dependent apoptosis and NF-kappaB/AP-1 signaling in human intrahepatic biliary epithelial cells. FASEB J 15: 2345–2354PubMedCrossRefGoogle Scholar
  44. 44.
    Afford SC, Randhawa S, Eliopoulos AG, Hubscher SG, Young LS, Adams DH (1999) CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface Fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection. J Exp Med 189: 441–446PubMedCrossRefGoogle Scholar
  45. 45.
    Shen XD, Ke B, Zhai Y, Amersi F, Gao F, Anselmo DM, Busuttil RW, Kupiec-Weglinski JW (2002) CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection. Transplantation 74: 315–319PubMedCrossRefGoogle Scholar
  46. 46.
    Ke B, Shen XD, Gao F, Tsuchihashi S, Farmer DG, Briscoe D, Busuttil RW, Kupiec-Weglinski JW (2005) The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation 79: 1078–1083PubMedCrossRefGoogle Scholar
  47. 47.
    Moore TM, Shirah WB, Khimenko PL, Paisley P, Lausch RN, Taylor AE (2002) Involvement of CD40-CD40L signaling in postischemic lung injury. Am J Physiol Lung Cell Mol Physiol 283: L1255–1262PubMedGoogle Scholar
  48. 48.
    Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, Granger DN (2005) CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 111: 1690–1696PubMedCrossRefGoogle Scholar
  49. 49.
    Parker DC, Greiner DL, Phillips NE, Appel MC, Steele AW, Durie FH, Noelle RJ, Mordes JP, Rossini AA (1995) Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci USA 92: 9560–9564PubMedCrossRefGoogle Scholar
  50. 50.
    Larsen CP, Alexander DZ, Hollenbaugh D, Elwood ET, Ritchie SC, Aruffo A, Hendrix R, Pearson TC (1996) CD40-gp39 interactions play a critical role during allograft rejection. Suppression of allograft rejection by blockade of the CD40-gp39 pathway. Transplantation 61: 4–9PubMedCrossRefGoogle Scholar
  51. 51.
    Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C, Cho HR, Aruffo A, Hollenbaugh D, Linsley PS et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381: 434–438PubMedCrossRefGoogle Scholar
  52. 52.
    Guo Z, Meng L, Kim O, Wang J, Hart J, He G, Alegre ML, Thistlethwaite JR Jr, Pearson TC, Larsen CP et al (2001) CD8 T cell-mediated rejection of intestinal allografts is resistant to inhibition of the CD40/CD154 costimulatory pathway. Transplantation 71: 1351–1354PubMedCrossRefGoogle Scholar
  53. 53.
    Sun H, Subbotin V, Chen C, Aitouche A, Valdivia LA, Sayegh MH, Linsley PS, Fung JJ, Starzl TE, Rao AS (1997) Prevention of chronic rejection in mouse aortic allografts by combined treatment with CTLA4-Ig and anti-CD40 ligand monoclonal antibody. Transplantation 64: 1838–1843PubMedCrossRefGoogle Scholar
  54. 54.
    Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Buhlman J, Xu J, Flavell RA, Korngold R, Noelle R, Vallera DA (1997) Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 158: 29–39PubMedGoogle Scholar
  55. 55.
    Qian Y, Boisgerault F, Benichou G, Dana MR (2001) Blockade of CD40-CD154 costimulatory pathway promotes survival of allogeneic corneal transplants. Invest Ophthalmol Vis Sci 42: 987–994PubMedGoogle Scholar
  56. 56.
    Tung TH, Mackinnon SE, Mohanakumar T (2003) Long-term limb allograft survival using anti-CD40L antibody in a murine model. Transplantation 75: 644–650PubMedCrossRefGoogle Scholar
  57. 57.
    Hancock WW, Sayegh MH, Zheng XG, Peach R, Linsley PS, Turka LA (1996) Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc Natl Acad Sci USA 93: 13967–13972PubMedCrossRefGoogle Scholar
  58. 58.
    Hancock WW, Buelow R, Sayegh MH, Turka LA (1998) Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nat Med 4: 1392–1396PubMedCrossRefGoogle Scholar
  59. 59.
    Iwakoshi NN, Mordes JP, Markees TG, Phillips NE, Rossini AA, Greiner DL (2000) Treatment of allograft recipients with donor-specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner. J Immunol 164: 512–521PubMedGoogle Scholar
  60. 60.
    Honey K, Cobbold SP, Waldmann H (1999) CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. J Immunol 163: 4805–4810PubMedGoogle Scholar
  61. 61.
    Jones ND, Van Maurik A, Hara M, Spriewald BM, Witzke O, Morris PJ, Wood KJ (2000) CD40-CD40 ligand-independent activation of CD8+ T cells can trigger allograft rejection. J Immunol 165: 1111–1118PubMedGoogle Scholar
  62. 62.
    Trambley J, Bingaman AW, Lin A, Elwood ET, Waitze SY, Ha J, Durham MM, Corbascio M, Cowan SR, Pearson TC et al (1999) Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 104: 1715–1722PubMedGoogle Scholar
  63. 63.
    Corbascio M, Mahanty H, Osterholm C, Qi Z, Pearson TC, Larsen CP, Freise CE, Ekberg H (2002) Anti-lymphocyte function-associated antigen-1 monoclonal antibody inhibits CD40 ligand-independent immune responses and prevents chronic vasculopathy in CD40 ligand-deficient mice. Transplantation 74: 35–41PubMedCrossRefGoogle Scholar
  64. 64.
    Nicolls MR, Coulombe M, Beilke J, Gelhaus HC, Gill RG (2002) CD4-dependent generation of dominant transplantation tolerance induced by simultaneous perturbation of CD154 and LFA-1 pathways. J Immunol 169: 4831–4839PubMedGoogle Scholar
  65. 65.
    Sho M, Harada H, Rothstein DM, Sayegh MH (2003) CD45RB-targeting strategies for promoting long-term allograft survival and preventing chronic allograft vasculopathy. Transplantation 75: 1142–1146PubMedCrossRefGoogle Scholar
  66. 66.
    Molano RD, Pileggi A, Berney T, Poggioli R, Zahr E, Oliver R, Ricordi C, Rothstein DM, Basadonna GP, Inverardi L (2003) Prolonged islet allograft survival in diabetic NOD mice by targeting CD45RB and CD154. Diabetes 52: 957–964PubMedCrossRefGoogle Scholar
  67. 67.
    Ozkaynak E, Gao W, Shemmeri N, Wang C, Gutierrez-Ramos JC, Amaral J, Qin S, Rottman JB, Coyle AJ, Hancock WW (2001) Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat Immunol 2: 591–596PubMedCrossRefGoogle Scholar
  68. 68.
    Gao W, Demirci G, Strom TB, Li XC (2003) Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival. Transplantation 76: 994–999PubMedCrossRefGoogle Scholar
  69. 69.
    Smiley ST, Csizmadia V, Gao W, Turka LA, Hancock WW (2000) Differential effects of cyclosporine A, methylprednisolone, mycophenolate, and rapamycin on CD154 induction and requirement for NFkappaB: implications for tolerance induction. Transplantation 70: 415–419PubMedCrossRefGoogle Scholar
  70. 70.
    Sho M, Sandner SE, Najafian N, Salama AD, Dong V, Yamada A, Kishimoto K, Harada H, Schmitt I, Sayegh MH (2002) New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg 236: 667–675PubMedCrossRefGoogle Scholar
  71. 71.
    Blaha P, Bigenzahn S, Koporc Z, Schmid M, Langer F, Selzer E, Bergmeister H, Wrba F, Kurtz J, Kiss C et al (2003) The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 101: 2886–2893PubMedCrossRefGoogle Scholar
  72. 72.
    Lombardi G, Sidhu S, Daly M, Batchelor JR, Makgoba W, Lechler RI (1990) Are primary alloresponses truly primary? Int Immunol 2: 9–13PubMedCrossRefGoogle Scholar
  73. 73.
    Valujskikh A, Pantenburg B, Heeger PS (2002) Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am J Transplant 2: 501PubMedCrossRefGoogle Scholar
  74. 74.
    Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW (2002) Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol 169: 4667–4673PubMedGoogle Scholar
  75. 75.
    Wu Z, Bensinger SJ, Zhang J, Chen C, Yuan X, Huang X, Markmann JF, Kassaee A, Rosengard BR, Hancock WW et al (2004) Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med 10: 87–92PubMedCrossRefGoogle Scholar
  76. 76.
    Vu MD, Clarkson MR, Yagita H, Turka LA, Sayegh MH, Li XC (2006) Critical, but conditional, role of OX40 in memory T cell-mediated rejection. J Immunol 176: 1394–1401PubMedGoogle Scholar
  77. 77.
    Braciale TJ, Andrew ME, Braciale VL (1981) Simultaneous expression of H-2-restricted and alloreactive recognition by a cloned line of influenza virus-specific cytotoxic T lymphocytes. J Exp Med 153: 1371–1376PubMedCrossRefGoogle Scholar
  78. 78.
    Yang H, Welsh RM (1986) Induction of alloreactive cytotoxic T cells by acute virus infection of mice. J Immunol 136: 1186–1193PubMedGoogle Scholar
  79. 79.
    Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, Kaech SM, Wherry EJ, Onami T, Lanier JG, Kokko KE et al (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111: 1887–1895PubMedCrossRefGoogle Scholar
  80. 80.
    Pantenburg B, Heinzel F, Das L, Heeger PS, Valujskikh A (2002) T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol 169: 3686–3693PubMedGoogle Scholar
  81. 81.
    Welsh RM, Markees TG, Woda BA, Daniels KA, Brehm MA, Mordes JP, Greiner DL, Rossini AA (2000) Virus-induced abrogation of transplantation tolerance induced by donor-specific transfusion and anti-CD154 antibody. J Virol 74: 2210–2218PubMedCrossRefGoogle Scholar
  82. 82.
    Forman D, Welsh RM, Markees TG, Woda BA, Mordes JP, Rossini AA, Greiner DL (2002) Viral abrogation of stem cell transplantation tolerance causes graft rejection and host death by different mechanisms. J Immunol 168: 6047–6056PubMedGoogle Scholar
  83. 83.
    Thornley TB, Brehm MA, Markees TG, Shultz LD, Mordes JP, Welsh RM, Rossini AA, Greiner DL (2006) TLR agonists abrogate costimulation blockade-induced prolongation of skin allografts. J Immunol 176: 1561–1570PubMedGoogle Scholar
  84. 84.
    Chen L, Wang T, Zhou P, Ma L, Yin D, Shen J, Molinero L, Nozaki T, Phillips T, Uematsu S et al (2006) TLR engagement prevents transplantation tolerance. Am J Transplant 6: 2282–2291PubMedCrossRefGoogle Scholar
  85. 85.
    Zhai Y, Shen XD, Gao F, Coito AJ, Wasowska BA, Salama A, Schmitt I, Busuttil RW, Sayegh MH, Kupiec-Weglinski JW (2002) The CD154-CD40 T cell costimulation pathway is required for host sensitization of CD8(+) T cells by skin grafts via direct antigen presentation. J Immunol 169: 1270–1276PubMedGoogle Scholar
  86. 86.
    Zhai Y, Meng L, Busuttil RW, Sayegh MH, Kupiec-Weglinski JW (2003) Activation of alloreactive CD8+ T cells operates via CD4-dependent and CD4-independent mechanisms and is CD154 blockade sensitive. J Immunol 170: 3024–3028PubMedGoogle Scholar
  87. 87.
    Gao D, Lunsford KE, Eiring AM, Bumgardner GL (2004) Critical role for CD8 T cells in allograft acceptance induced by DST and CD40/CD154 costimulatory blockade. Am J Transplant 4: 1061–1070PubMedCrossRefGoogle Scholar
  88. 88.
    Wells AD, Li XC, Li Y, Walsh MC, Zheng XX, Wu Z, Nunez G, Tang A, Sayegh M, Hancock WW et al (1999) Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5: 1303–1307PubMedCrossRefGoogle Scholar
  89. 89.
    Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB (1999) Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med 5: 1298–1302PubMedCrossRefGoogle Scholar
  90. 90.
    Sanchez-Fueyo A, Domenig C, Strom TB, Zheng XX (2002) The complement dependent cytotoxicity (CDC) immune effector mechanism contributes to anti-CD154 induced immunosuppression. Transplantation 74: 898–900PubMedCrossRefGoogle Scholar
  91. 91.
    Monk NJ, Hargreaves RE, Marsh JE, Farrar CA, Sacks SH, Millrain M, Simpson E, Dyson J, Jurcevic S (2003) Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 9: 1275–1280PubMedCrossRefGoogle Scholar
  92. 92.
    Nathan MJ, Yin D, Eichwald EJ, Bishop DK (2002) The immunobiology of inductive anti-CD40L therapy in transplantation: allograft acceptance is not dependent upon the deletion of graft-reactive T cells. Am J Transplant 2: 323–332PubMedCrossRefGoogle Scholar
  93. 93.
    Taylor PA, Noelle RJ, Blazar BR (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 193: 1311–1318PubMedCrossRefGoogle Scholar
  94. 94.
    Taylor PA, Friedman TM, Korngold R, Noelle RJ, Blazar BR (2002) Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40:CD40L costimulatory pathway results in the generation of a potent immune regulatory cell. Blood 99: 4601–4609PubMedCrossRefGoogle Scholar
  95. 95.
    Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW (2002) Allograft rejection by primed/memory CD8(+) T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol 169: 4667–4673PubMedGoogle Scholar
  96. 96.
    Quezada SA, Bennett K, Blazar BR, Rudensky AY, Sakaguchi S, Noelle RJ (2005) Analysis of the underlying cellular mechanisms of anti-CD154-induced graft tolerance: the interplay of clonal anergy and immune regulation. J Immunol 175: 771–779PubMedGoogle Scholar
  97. 97.
    Kurtz J, Shaffer J, Lie A, Anosova N, Benichou G, Sykes M (2004) Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood 103: 4336–4343PubMedCrossRefGoogle Scholar
  98. 98.
    Linhart B, Bigenzahn S, Hartl A, Lupinek C, Thalhamer J, Valenta R, Wekerle T (2007) Costimulation blockade inhibits allergic sensitization but does not affect established allergy in a murine model of grass pollen allergy. J Immunol 178: 3924–3931PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Yuan Zhai
    • 1
  • Jerzy W. Kupiec-Weglinski
    • 1
  1. 1.The Dumont-UCLA Transplant Center, Department of SurgeryDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations