Advertisement

The induction of regulatory T cells by targeting the immune synapse

  • Luis Graca
Part of the Progress in Inflammation Research book series (PIR)

Abstract

The control of deleterious immune responses causing diseases, such as allergy, autoimmunity and transplant rejection, has been one of the main objectives of immunologists. In recent years, regulatory T (Treg) cells have reached center-stage in immunology research, as they were shown to be effective in preventing deleterious immune responses and maintaining a healthy state of immunological non-responsiveness, also known as immune tolerance [1]. It is now accepted that a natural population of Treg cells is generated in the thymus and plays a major role in preventing autoimmunity [2]. Several research groups have been developing strategies to isolate and expand rare self-reactive Treg cell clones as a therapeutic strategy for autoimmunity [3, 4].

Keywords

Treg Cell Nonobese Diabetic Mouse Transplantation Tolerance Altered Peptide Ligand Immune Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352PubMedCrossRefGoogle Scholar
  2. 2.
    Kim JM, Rudensky A (2006) The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev 212: 86–98PubMedCrossRefGoogle Scholar
  3. 3.
    Bluestone JA (2005) Regulatory T-cell therapy: is it ready for the clinic? Nat Rev Immunol 5: 343–349PubMedCrossRefGoogle Scholar
  4. 4.
    Yamazaki S, Inaba K, Tarbell KV, Steinman RM (2006) Dendritic cells expand antigenspecific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity. Immunol Rev 212: 314–329PubMedCrossRefGoogle Scholar
  5. 5.
    Apostolou I, von Boehmer H (2004) In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199: 1401–1408PubMedCrossRefGoogle Scholar
  6. 6.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886PubMedCrossRefGoogle Scholar
  7. 7.
    Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L, Humm S, Waldmann H (2004) Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172: 6003–6010PubMedGoogle Scholar
  8. 8.
    Waldmann H, Chen TC, Graca L, Adams E, Daley S, Cobbold S, Fairchild PJ (2006) Regulatory T cells in transplantation. Semin Immunol 18: 111–119PubMedCrossRefGoogle Scholar
  9. 9.
    Qin SX, Wise M, Cobbold SP, Leong L, Kong YC, Parnes JR, Waldmann H (1990) Induction of tolerance in peripheral T cells with monoclonal antibodies. Eur J Immunol 20: 2737–2745PubMedCrossRefGoogle Scholar
  10. 10.
    Graca L, Honey K, Adams E, Cobbold SP, Waldmann H (2000) Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. J Immunol 165: 4783–4786PubMedGoogle Scholar
  11. 11.
    Qin S, Cobbold SP, Pope H, Elliott J, Kioussis D, Davies J, Waldmann H (1993) “Infectious” transplantation tolerance. Science 259: 974–977PubMedCrossRefGoogle Scholar
  12. 12.
    Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H (1996) T cell suppression in transplantation tolerance through linked recognition. J Immunol 156: 3602–3607PubMedGoogle Scholar
  13. 13.
    Modigliani Y, Coutinho A, Pereira P, Le Douarin N, Thomas-Vaslin V, Burlen-Defranoux O, Salaun J, Bandeira A (1996) Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur J Immunol 26: 1807–1815PubMedCrossRefGoogle Scholar
  14. 14.
    Chai JG, James E, Dewchand H, Simpson E, Scott D (2004) Transplantation tolerance induced by intranasal administration of HY peptides. Blood 103: 3951–3959PubMedCrossRefGoogle Scholar
  15. 15.
    James E, Scott D, Chai JG, Millrain M, Chandler P, Simpson E (2002) HY peptides modulate transplantation responses to skin allografts. Int Immunol 14: 1333–1342PubMedCrossRefGoogle Scholar
  16. 16.
    Chen TC, Waldmann H, Fairchild PJ (2004) Induction of dominant transplantation tolerance by an altered peptide ligand of the male antigen Dby. J Clin Invest 113: 1754–1762PubMedCrossRefGoogle Scholar
  17. 17.
    Chen TC, Cobbold SP, Fairchild PJ, Waldmann H (2004) Generation of anergic and regulatory T cells following prolonged exposure to a harmless antigen. J Immunol 172: 5900–5907PubMedGoogle Scholar
  18. 18.
    Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H (2002) Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 80: 477–483PubMedCrossRefGoogle Scholar
  19. 19.
    Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21: 685–711PubMedCrossRefGoogle Scholar
  20. 20.
    Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159: 4772–4780PubMedGoogle Scholar
  21. 21.
    Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R (2001) Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA 98: 6800–6805PubMedCrossRefGoogle Scholar
  22. 22.
    Yang J, Bernier SM, Ichim TE, Li M, Xia X, Zhou D, Huang X, Strejan GH, White DJ, Zhong R et al (2003) LF15-0195 generates tolerogenic dendritic cells by suppression of NF-kappaB signaling through inhibition of IKK activity. J Leukoc Biol 74: 438–447PubMedCrossRefGoogle Scholar
  23. 23.
    Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196: 1091–1097PubMedCrossRefGoogle Scholar
  24. 24.
    Wekerle T, Sykes M (2001) Mixed chimerism and transplantation tolerance. Annu Rev Med 52: 353–370PubMedCrossRefGoogle Scholar
  25. 25.
    Graca L, Le Moine A, Lin CY, Fairchild PJ, Cobbold SP, Waldmann H (2004) Donorspecific transplantation tolerance: the paradoxical behavior of CD4+CD25+ T cells. Proc Natl Acad Sci USA 101: 10122–10126PubMedCrossRefGoogle Scholar
  26. 26.
    Dorsch S, Roser B (1982) Suppressor cells in transplantation tolerance. I. Analysis of the suppressor status of neonatally and adoptively tolerized rats. Transplantation 33: 518–524PubMedCrossRefGoogle Scholar
  27. 27.
    Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21: 903–914PubMedGoogle Scholar
  28. 28.
    Kojima A, Taguchi O, Nishizuka Y (1980) Experimental production of possible autoimmune gastritis followed by macrocytic anemia in athymic nude mice. Lab Invest 42: 387–395PubMedGoogle Scholar
  29. 29.
    Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y (1976) Prevention of postthymectomy autoimmune thyroiditis in mice. Lab Invest 34: 601–605PubMedGoogle Scholar
  30. 30.
    Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166: 753–755PubMedCrossRefGoogle Scholar
  31. 31.
    Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161: 72–87PubMedCrossRefGoogle Scholar
  32. 32.
    Hall BM, Jelbart ME, Gurley KE, Dorsch SE (1985) Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Mediation of specific suppression by T helper/inducer cells. J Exp Med 162: 1683–1694PubMedCrossRefGoogle Scholar
  33. 33.
    Fowell D, Mason D (1993) Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 177: 627–636PubMedCrossRefGoogle Scholar
  34. 34.
    Powrie F, Mason D (1990) OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 172: 1701–1708PubMedCrossRefGoogle Scholar
  35. 35.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164PubMedGoogle Scholar
  36. 36.
    Chatenoud L (2006) Immune therapies of autoimmune diseases: are we approaching a real cure? Curr Opin Immunol 18: 710–717PubMedCrossRefGoogle Scholar
  37. 37.
    Graca L, Cobbold SP, Waldmann H (2002) Identification of regulatory T cells in tolerated allografts. J Exp Med 195: 1641–1646PubMedCrossRefGoogle Scholar
  38. 38.
    Cobbold SP, Adams E, Graca L, Daley S, Yates S, Paterson A, Robertson NJ, Nolan KF, Fairchild PJ, Waldmann H (2006) Immune privilege induced by regulatory T cells in transplantation tolerance. Immunol Rev 213: 239–255PubMedCrossRefGoogle Scholar
  39. 39.
    Oliveira V, Agua-Doce A, Duarte J, Soares MP, Graca L (2006) Regulatory T cell maintenance of dominant tolerance: induction of tissue self-defense? Transpl Immunol 17: 7–10PubMedCrossRefGoogle Scholar
  40. 40.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061PubMedCrossRefGoogle Scholar
  41. 41.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336PubMedCrossRefGoogle Scholar
  42. 42.
    Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4: 337–342PubMedCrossRefGoogle Scholar
  43. 43.
    Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341PubMedCrossRefGoogle Scholar
  44. 44.
    Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37: 129–138PubMedCrossRefGoogle Scholar
  45. 45.
    Levings MK, Roncarolo MG (2005) Phenotypic and functional differences between human CD4+CD25+ and type 1 regulatory T cells. Curr Top Microbiol Immunol 293: 303–326PubMedGoogle Scholar
  46. 46.
    Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8: 191–197PubMedCrossRefGoogle Scholar
  47. 47.
    Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106: R75–81PubMedGoogle Scholar
  48. 48.
    Suvas S, Rouse BT (2006) Treg control of antimicrobial T cell responses. Curr Opin Immunol 18: 344–348PubMedCrossRefGoogle Scholar
  49. 49.
    Wang HY, Wang RF (2007) Regulatory T cells and cancer. Curr Opin Immunol 19: 217–223PubMedCrossRefGoogle Scholar
  50. 50.
    Liston A, Rudensky AY (2007) Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol 19: 176–185PubMedCrossRefGoogle Scholar
  51. 51.
    Graca L, Chen TC, Le Moine A, Cobbold SP, Howie D, Waldmann H (2005) Dominant tolerance: activation thresholds for peripheral generation of regulatory T cells. Trends Immunol 26: 130–135PubMedCrossRefGoogle Scholar
  52. 52.
    Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2: 301–306PubMedCrossRefGoogle Scholar
  53. 53.
    Yates SF, Paterson AM, Nolan KF, Cobbold SP, Saunders NJ, Waldmann H, Fairchild PJ (2007) Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation. J Immunol 179: 967–976PubMedGoogle Scholar
  54. 54.
    Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C et al (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176: 6752–6761PubMedGoogle Scholar
  55. 55.
    Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115: 1923–1933PubMedCrossRefGoogle Scholar
  56. 56.
    Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ (2004) CD25 T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173: 7259–7268PubMedGoogle Scholar
  57. 57.
    Liang S, Alard P, Zhao Y, Parnell S, Clark SL, Kosiewicz MM (2005) Conversion of CD4+ CD25 cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 201: 127–137PubMedCrossRefGoogle Scholar
  58. 58.
    Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212: 28–50PubMedCrossRefGoogle Scholar
  59. 59.
    Battaglia M, Gregori S, Bacchetta R, Roncarolo MG (2006) Tr1 cells: from discovery to their clinical application. Semin Immunol 18: 120–127PubMedCrossRefGoogle Scholar
  60. 60.
    Lamb JR, Skidmore BJ, Green N, Chiller JM, Feldmann M (1983) Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med 157: 1434–1447PubMedCrossRefGoogle Scholar
  61. 61.
    Jenkins MK, Schwartz RH (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165: 302–319PubMedCrossRefGoogle Scholar
  62. 62.
    Quill H, Schwartz RH (1987) Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. J Immunol 138: 3704–3712PubMedGoogle Scholar
  63. 63.
    Sloan-Lancaster J, Evavold BD, Allen PM (1993) Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 363: 156–159PubMedCrossRefGoogle Scholar
  64. 64.
    Sloan-Lancaster J, Evavold BD, Allen PM (1994) Th2 cell clonal anergy as a consequence of partial activation. J Exp Med 180: 1195–1205PubMedCrossRefGoogle Scholar
  65. 65.
    Lombardi G, Hargreaves R, Sidhu S, Imami N, Lightstone L, Fuller-Espie S, Ritter M, Robinson P, Tarnok A, Lechler R (1996) Antigen presentation by T cells inhibits IL-2 production and induces IL-4 release due to altered cognate signals. J Immunol 156: 2769–2775PubMedGoogle Scholar
  66. 66.
    Taams LS, van Rensen AJ, Poelen MC, van Els CA, Besseling AC, Wagenaar JP, van Eden W, Wauben MH (1998) Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur J Immunol 28: 2902–2912PubMedCrossRefGoogle Scholar
  67. 67.
    Qin SX, Cobbold S, Benjamin R, Waldmann H (1989) Induction of classical transplantation tolerance in the adult. J Exp Med 169: 779–794PubMedCrossRefGoogle Scholar
  68. 68.
    Alters SE, Shizuru JA, Ackerman J, Grossman D, Seydel KB, Fathman CG (1991) Anti-CD4 mediates clonal anergy during transplantation tolerance induction. J Exp Med 173: 491–494PubMedCrossRefGoogle Scholar
  69. 69.
    Rammensee HG, Kroschewski R, Frangoulis B (1989) Clonal anergy induced in mature V beta 6+ T lymphocytes on immunizing Mls-1b mice with Mls-1a expressing cells. Nature 339: 541–544PubMedCrossRefGoogle Scholar
  70. 70.
    Burstein HJ, Shea CM, Abbas AK (1992) Aqueous antigens induce in vivo tolerance selectively in IL-2-and IFN-gamma-producing (Th1) cells. J Immunol 148: 3687–3691PubMedGoogle Scholar
  71. 71.
    Jordan MS, Riley MP, von Boehmer H, Caton AJ (2000) Anergy and suppression regulate CD4(+) T cell responses to a self peptide. Eur J Immunol 30: 136–144PubMedCrossRefGoogle Scholar
  72. 72.
    Schonrich G, Momburg F, Hammerling GJ, Arnold B (1992) Anergy induced by thymic medullary epithelium. Eur J Immunol 22: 1687–1691PubMedCrossRefGoogle Scholar
  73. 73.
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265: 1237–1240PubMedCrossRefGoogle Scholar
  74. 74.
    Graca L (2005) New tools to identify regulatory T cells. Eur J Immunol 35: 1678–1680PubMedCrossRefGoogle Scholar
  75. 75.
    Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199: 1455–1465PubMedCrossRefGoogle Scholar
  76. 76.
    Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199: 1467–1477PubMedCrossRefGoogle Scholar
  77. 77.
    Masteller EL, Warner MR, Tang Q, Tarbell KV, McDevitt H, Bluestone JA (2005) Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 175: 3053–3059PubMedGoogle Scholar
  78. 78.
    Fisson S, Djelti F, Trenado A, Billiard F, Liblau R, Klatzmann D, Cohen JL, Salomon BL (2006) Therapeutic potential of self-antigen-specific CD4+ CD25+ regulatory T cells selected in vitro from a polyclonal repertoire. Eur J Immunol 36: 817–827PubMedCrossRefGoogle Scholar
  79. 79.
    Graca L, Silva-Santos B, Coutinho A (2006) The blind-spot of regulatory T cells. Eur J Immunol 36: 802–805PubMedCrossRefGoogle Scholar
  80. 80.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cellmediated suppression by dendritic cells. Science 299: 1033–1036PubMedCrossRefGoogle Scholar
  81. 81.
    Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116: 485–494PubMedCrossRefGoogle Scholar
  82. 82.
    Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21: 267–277PubMedCrossRefGoogle Scholar
  83. 83.
    Lerman MA, Larkin J 3rd, Cozzo C, Jordan MS, Caton AJ (2004) CD4+ CD25+ regulatory T cell repertoire formation in response to varying expression of a neo-self-antigen. J Immunol 173: 236–244PubMedGoogle Scholar
  84. 84.
    Veldhoen M, Magee AI, Penha-Goncalves MN, Stockinger B (2005) Transduction of naive CD4 T cells with kinase-deficient Lck-HIV-Tat fusion protein dampens T cell activation and provokes a switch to regulatory function. Eur J Immunol 35: 207–216PubMedCrossRefGoogle Scholar
  85. 85.
    Chavin KD, Lau HT, Bromberg JS (1992) Prolongation of allograft and xenograft survival in mice by anti-CD2 monoclonal antibodies. Transplantation 54: 286–291PubMedCrossRefGoogle Scholar
  86. 86.
    Nicolls MR, Aversa GG, Pearce NW, Spinelli A, Berger MF, Gurley KE, Hall BM (1993) Induction of long-term specific tolerance to allografts in rats by therapy with an anti-CD3-like monoclonal antibody. Transplantation 55: 459–468PubMedCrossRefGoogle Scholar
  87. 87.
    Chavin KD, Qin L, Lin J, Yagita H, Bromberg JS (1993) Combined anti-CD2 and anti-CD3 receptor monoclonal antibodies induce donor-specific tolerance in a cardiac transplant model. J Immunol 151: 7249–7259PubMedGoogle Scholar
  88. 88.
    Winsor-Hines D, Merrill C, O’Mahony M, Rao PE, Cobbold SP, Waldmann H, Ringler DJ, Ponath PD (2004) Induction of immunological tolerance/hyporesponsiveness in baboons with a nondepleting CD4 antibody. J Immunol 173: 4715–4723PubMedGoogle Scholar
  89. 89.
    Chen ZK, Cobbold SP, Waldmann H, Metcalfe S (1996) Amplification of natural regulatory immune mechanisms for transplantation tolerance. Transplantation 62: 1200–1206PubMedCrossRefGoogle Scholar
  90. 90.
    Lenschow DJ, Zeng Y, Thistlethwaite JR, Montag A, Brady W, Gibson MG, Linsley PS, Bluestone JA (1992) Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257: 789–792PubMedCrossRefGoogle Scholar
  91. 91.
    Lazarovits AI, Poppema S, Zhang Z, Khandaker M, Le Feuvre CE, Singhal SK, Garcia BM, Ogasa N, Jevnikar AM, White MH et al (1996) Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature 380: 717–720PubMedCrossRefGoogle Scholar
  92. 92.
    Basadonna GP, Auersvald L, Khuong CQ, Zheng XX, Kashio N, Zekzer D, Minozzo M, Qian H, Visser L, Diepstra A et al (1998) Antibody-mediated targeting of CD45 isoforms: a novel immunotherapeutic strategy. Proc Natl Acad Sci USA 95: 3821–3826PubMedCrossRefGoogle Scholar
  93. 93.
    Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE et al (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23: 115–126PubMedCrossRefGoogle Scholar
  94. 94.
    Curry AJ, Chikwe J, Smith XG, Cai M, Schwarz H, Bradley JA, Bolton EM (2004) OX40 (CD134) blockade inhibits the co-stimulatory cascade and promotes heart allograft survival. Transplantation 78: 807–814PubMedCrossRefGoogle Scholar
  95. 95.
    Wu Z, Bensinger SJ, Zhang J, Chen C, Yuan X, Huang X, Markmann JF, Kassaee A, Rosengard BR, Hancock WW et al (2004) Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med 10: 87–92PubMedCrossRefGoogle Scholar
  96. 96.
    Parker DC, Greiner DL, Phillips NE, Appel MC, Steele AW, Durie FH, Noelle RJ, Mordes JP, Rossini AA (1995) Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci USA 92: 9560–9564PubMedCrossRefGoogle Scholar
  97. 97.
    Honey K, Cobbold SP, Waldmann H (1999) CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. J Immunol 163: 4805–4810PubMedGoogle Scholar
  98. 98.
    Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C, Cho HR, Aruffo A, Hollenbaugh D, Linsley PS et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381: 434–438PubMedCrossRefGoogle Scholar
  99. 99.
    Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R, Martin T, Degott C, Kikutani H, Rajewsky K, Pasquali JL et al (1999) From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10: 451–461PubMedCrossRefGoogle Scholar
  100. 100.
    Benjamin RJ, Qin SX, Wise MP, Cobbold SP, Waldmann H (1988) Mechanisms of monoclonal antibody-facilitated tolerance induction: a possible role for the CD4 (L3T4) and CD11a (LFA-1) molecules in self-non-self discrimination. Eur J Immunol 18: 1079–1088PubMedCrossRefGoogle Scholar
  101. 101.
    Isobe M, Yagita H, Okumura K, Ihara A (1992) Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 255: 1125–1127PubMedCrossRefGoogle Scholar
  102. 102.
    Zheng XX, Sanchez-Fueyo A, Sho M, Domenig C, Sayegh MH, Strom TB (2003) Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 19: 503–514PubMedCrossRefGoogle Scholar
  103. 103.
    Inomata T, Watanabe T, Haga M, Hirahara H, Abo T, Okura Y, Hanawa H, Kodama M, Izumi T (2000) Anti-CD2 monoclonal antibodies prevent the induction of experimental autoimmune myocarditis. Jpn Heart J 41: 507–517PubMedCrossRefGoogle Scholar
  104. 104.
    Jung S, Toyka K, Hartung HP (1995) Suppression of experimental autoimmune encephalomyelitis in Lewis rats by antibodies against CD2. Eur J Immunol 25: 1391–1398PubMedCrossRefGoogle Scholar
  105. 105.
    Barlow AK, Like AA (1992) Anti-CD2 monoclonal antibodies prevent spontaneous and adoptive transfer of diabetes in the BB/Wor rat. Am J Pathol 141: 1043–1051PubMedGoogle Scholar
  106. 106.
    Chatenoud L, Thervet E, Primo J, Bach JF (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91: 123–127PubMedCrossRefGoogle Scholar
  107. 107.
    Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158: 2947–2954PubMedGoogle Scholar
  108. 108.
    von Herrath MG, Coon B, Wolfe T, Chatenoud L (2002) Nonmitogenic CD3 antibody reverses virally induced (rat insulin promoter-lymphocytic choriomeningitis virus) autoimmune diabetes without impeding viral clearance. J Immunol 168: 933–941Google Scholar
  109. 109.
    Chatenoud L (2003) CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 3: 123–132PubMedCrossRefGoogle Scholar
  110. 110.
    Hughes C, Wolos JA, Giannini EH, Hirsch R (1994) Induction of T helper cell hyporesponsiveness in an experimental model of autoimmunity by using nonmitogenic anti-CD3 monoclonal antibody. J Immunol 153: 3319–3325PubMedGoogle Scholar
  111. 111.
    Hahn HJ, Kuttler B, Laube F, Emmrich F (1993) Anti-CD4 therapy in recent-onset IDDM. Diabetes Metab Rev 9: 323–328PubMedGoogle Scholar
  112. 112.
    Phillips JM, Harach SZ, Parish NM, Fehervari Z, Haskins K, Cooke A (2000) Nondepleting anti-CD4 has an immediate action on diabetogenic effector cells, halting their destruction of pancreatic beta cells. J Immunol 165: 1949–1955PubMedGoogle Scholar
  113. 113.
    Guo Z, Wu T, Kirchhof N, Mital D, Williams JW, Azuma M, Sutherland DE, Hering BJ (2001) Immunotherapy with nondepleting anti-CD4 monoclonal antibodies but not CD28 antagonists protects islet graft in spontaneously diabetic nod mice from autoimmune destruction and allogeneic and xenogeneic graft rejection. Transplantation 71: 1656–1665PubMedCrossRefGoogle Scholar
  114. 114.
    Makhlouf L, Grey ST, Dong V, Csizmadia E, Arvelo MB, Auchincloss H Jr., Ferran C, Sayegh MH (2004) Depleting anti-CD4 monoclonal antibody cures new-onset diabetes, prevents recurrent autoimmune diabetes, and delays allograft rejection in nonobese diabetic mice. Transplantation 77: 990–997PubMedCrossRefGoogle Scholar
  115. 115.
    Adachi Y, Inaba M, Sugihara A, Koshiji M, Sugiura K, Amoh Y, Mori S, Kamiya T, Genba H, Ikehara S (1998) Effects of administration of monoclonal antibodies (anti-CD4 or anti-CD8) on the development of autoimmune diseases in (NZW × BXSB)F1 mice. Immunobiology 198: 451–464PubMedGoogle Scholar
  116. 116.
    Mauri C, Chu CQ, Woodrow D, Mori L, Londei M (1997) Treatment of a newly established transgenic model of chronic arthritis with nondepleting anti-CD4 monoclonal antibody. J Immunol 159: 5032–5041PubMedGoogle Scholar
  117. 117.
    Chakrabarty S, Nagata M, Yasuda H, Wen L, Nakayama M, Chowdhury SA, Yamada K, Jin Z, Kotani R, Moriyama H et al (2003) Critical roles of CD30/CD30L interactions in murine autoimmune diabetes. Clin Exp Immunol 133: 318–325PubMedCrossRefGoogle Scholar
  118. 118.
    Nohara C, Akiba H, Nakajima A, Inoue A, Koh CS, Ohshima H, Yagita H, Mizuno Y, Okumura K (2001) Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J Immunol 166: 2108–2115PubMedGoogle Scholar
  119. 119.
    Croxford JL, O’Neill JK, Ali RR, Browne K, Byrnes AP, Dallman MJ, Wood MJ, Fedlmann M, Baker D (1998) Local gene therapy with CTLA4-immunoglobulin fusion protein in experimental allergic encephalomyelitis. Eur J Immunol 28: 3904–3916PubMedCrossRefGoogle Scholar
  120. 120.
    Finck BK, Linsley PS, Wofsy D (1994) Treatment of murine lupus with CTLA4Ig. Science 265: 1225–1227PubMedCrossRefGoogle Scholar
  121. 121.
    Mihara M, Tan I, Chuzhin Y, Reddy B, Budhai L, Holzer A, Gu Y, Davidson A (2000) CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus. J Clin Invest 106: 91–101PubMedCrossRefGoogle Scholar
  122. 122.
    Daikh DI, Wofsy D (2001) Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol 166: 2913–2916PubMedGoogle Scholar
  123. 123.
    Wang X, Huang W, Mihara M, Sinha J, Davidson A (2002) Mechanism of action of combined short-term CTLA4Ig and anti-CD40 ligand in murine systemic lupus erythematosus. J Immunol 168: 2046–2053PubMedGoogle Scholar
  124. 124.
    Chu EB, Hobbs MV, Wilson CB, Romball CG, Linsley PS, Weigle WO (1996) Intervention of CD4+ cell subset shifts and autoimmunity in the BXSB mouse by murine CTLA4Ig. J Immunol 156: 1262–1268PubMedGoogle Scholar
  125. 125.
    Boon L, Brok HP, Bauer J, Ortiz-Buijsse A, Schellekens MM, Ramdien-Murli S, Blezer E, van Meurs M, Ceuppens J, de Boer M et al (2001) Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J Immunol 167: 2942–2949PubMedGoogle Scholar
  126. 126.
    Sharp C, Thompson C, Samy ET, Noelle R, Tung KS (2003) CD40 ligand in pathogenesis of autoimmune ovarian disease of day 3-thymectomized mice: implication for CD40 ligand antibody therapy. J Immunol 170: 1667–1674PubMedGoogle Scholar
  127. 127.
    Namba K, Ogasawara K, Kitaichi N, Morohashi T, Sasamoto Y, Kotake S, Matsuda H, Iwabuchi K, Iwabuchi C, Ohno S et al (2000) Amelioration of experimental autoimmune uveoretinitis by pretreatment with a pathogenic peptide in liposome and anti-CD40 ligand monoclonal antibody. J Immunol 165: 2962–2969PubMedGoogle Scholar
  128. 128.
    Carayanniotis G, Masters SR, Noelle RJ (1997) Suppression of murine thyroiditis via blockade of the CD40-CD40L interaction. Immunology 90: 421–426PubMedCrossRefGoogle Scholar
  129. 129.
    Early GS, Zhao W, Burns CM (1996) Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black × New Zealand white mice. Response correlates with the absence of an anti-antibody response. J Immunol 157: 3159–3164PubMedGoogle Scholar
  130. 130.
    Zandman-Goddard G, Shoenfeld Y (2000) Novel approaches to therapy for systemic lupus erythematosus. Eur J Intern Med 11: 130–134PubMedCrossRefGoogle Scholar
  131. 131.
    Kalled SL, Cutler AH, Burkly LC (2001) Apoptosis and altered dendritic cell homeostasis in lupus nephritis are limited by anti-CD154 treatment. J Immunol 167: 1740–1747PubMedGoogle Scholar
  132. 132.
    Quezada SA, Eckert M, Adeyi OA, Schned AR, Noelle RJ, Burns CM (2003) Distinct mechanisms of action of anti-CD154 in early versus late treatment of murine lupus nephritis. Arthritis Rheum 48: 2541–2554PubMedCrossRefGoogle Scholar
  133. 133.
    t Hart BA, Blezer EL, Brok HP, Boon L, de Boer M, Bauer J, Laman JD (2005) Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE. J Neuroimmunol 163: 31–39CrossRefGoogle Scholar
  134. 134.
    Foell JL, Diez-Mendiondo BI, Diez OH, Holzer U, Ruck P, Bapat AS, Hoffmann MK, Mittler RS, Dannecker GE (2004) Engagement of the CD137 (4-1BB) costimulatory molecule inhibits and reverses the autoimmune process in collagen-induced arthritis and establishes lasting disease resistance. Immunology 113: 89–98PubMedCrossRefGoogle Scholar
  135. 135.
    Foell J, Strahotin S, O’Neil SP, McCausland MM, Suwyn C, Haber M, Chander PN, Bapat AS, Yan XJ, Chiorazzi N et al (2003) CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB × NZW F1 mice. J Clin Invest 111: 1505–1518PubMedCrossRefGoogle Scholar
  136. 136.
    Malmstrom V, Shipton D, Singh B, Al-Shamkhani A, Puklavec MJ, Barclay AN, Powrie F (2001) CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166: 6972–6981PubMedGoogle Scholar
  137. 137.
    Lee J, Lee EN, Kim EY, Park HJ, Chang CY, Jung DY, Choi SY, Lee SK, Lee KW, Kwon GY et al (2005) Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of inflammatory bowel disease. Immunol Lett 101: 210–216PubMedCrossRefGoogle Scholar
  138. 138.
    Sun Y, Lin X, Chen HM, Wu Q, Subudhi SK, Chen L, Fu YX (2002) Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol 168: 1457–1465PubMedGoogle Scholar
  139. 139.
    Moriyama H, Yokono K, Amano K, Nagata M, Hasegawa Y, Okamoto N, Tsukamoto K, Miki M, Yoneda R, Yagi N et al (1996) Induction of tolerance in murine autoimmune diabetes by transient blockade of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway. J Immunol 157: 3737–3743PubMedGoogle Scholar
  140. 140.
    Bommireddy R, Saxena V, Ormsby I, Yin M, Boivin GP, Babcock GF, Singh PR, Doetschmann T (2003) TGF-beta 1 regulates lymphocyte homeostasis by preventing activation and subsequent apoptosis of peripheral lymphocytes. J Immunol 170: 4612–4622PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Luis Graca
    • 1
    • 2
  1. 1.Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisboa
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations