FOXP3 biochemistry will lead to novel drug approaches for vaccines and diseases that lack suppressor T cells

  • Bin Li
  • Xiaomin Song
  • Arabinda Samanta
  • Kathryn Bembas
  • Amy Brown
  • Geng Zhang
  • Makoto Katsumata
  • Yuan Shen
  • Sandra J. Saouaf
  • Mark I. Greene
Part of the Progress in Inflammation Research book series (PIR)


FOXP3 is a forkhead family transcription factor, which acts as a master regulator in the development of natural regulatory T cells (Tregs) and their function in the control of self tolerance [1]. Natural Tregs, which represent about 5–10% of total CD4+ T cells, develop in the thymus and have a middle-high TCR-binding affinity. Tregs function as suppressors of multiple immune cells including CD4 effector T cells, CD8 cytotoxic T cells, B cells, NK cells, and dendritic cells in vivo [2]. Although the molecular mechanism by which Tregs suppress these multiple immune cells in a cell-cell contact-dependent manner is largely unknown [3], recent experimental evidence supports the notion that the level and duration of FOXP3 expression is essential to Treg-mediated dominant suppression [4, 5]. A complete understanding of the biochemistry of FOXP3 activity in Tregs will have therapeutic implications for transplantation, allergy, autoimmune disease, inflammatory disease, vaccine development and cancer [6].


FOXP3 Expression Treg Function Neonatal Diabetes Mellitus Drug Approach Mouse Scurfy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562PubMedCrossRefGoogle Scholar
  2. 2.
    Rudensky AY, Campbell DJ (2006) In vivo sites and cellular mechanisms of Treg cell-mediated suppression. J Exp Med 203: 489–492PubMedCrossRefGoogle Scholar
  3. 3.
    von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6: 338–344CrossRefGoogle Scholar
  4. 4.
    Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8: 277–284PubMedCrossRefGoogle Scholar
  5. 5.
    Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445: 766–770PubMedCrossRefGoogle Scholar
  6. 6.
    Li B,_ Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, Katsumata M, Saouaf SJ, Greene MI (2006) FOXP3 ensembles in T-cell regulation. Immunol Rev 212: 99–113PubMedCrossRefGoogle Scholar
  7. 7.
    Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166: 753–755PubMedCrossRefGoogle Scholar
  8. 8.
    Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21: 903–914PubMedGoogle Scholar
  9. 9.
    Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18: 723–737PubMedGoogle Scholar
  10. 10.
    Gershon RK, Cohen P, Hencin R, Liebhaber SA (1972) Suppressor T cells. J Immunol 108: 586–590PubMedGoogle Scholar
  11. 11.
    Cantor H, Hugenberger J, McVay-Boudreau L, Eardley DD, Kemp J, Shen FW, Gershon RK (1978) Immunoregulatory circuits among T-cell sets. Identification of a subpopulation of T-helper cells that induces feedback inhibition. J Exp Med 148: 871–877PubMedCrossRefGoogle Scholar
  12. 12.
    Lu L, Werneck MB, Cantor H (2006) The immunoregulatory effects of Qa-1. Immunol. Rev 212: 51–59PubMedCrossRefGoogle Scholar
  13. 13.
    Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161: 72–87PubMedCrossRefGoogle Scholar
  14. 14.
    Fowell D, McKnight AJ, Powrie F, Dyke R, Mason D (1991) Subsets of CD4+ T cells and their roles in the induction and prevention of autoimmunity. Immunol Rev 123: 37–64PubMedCrossRefGoogle Scholar
  15. 15.
    Powrie F, Mason D (1990) OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 172: 1701–1708PubMedCrossRefGoogle Scholar
  16. 16.
    Godfrey VL, Wilkinson JE, Russell LB (1991) X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 138: 1379–1387PubMedGoogle Scholar
  17. 17.
    Blair PJ, Carpenter DA, Godfrey VL, Russell LB, Wilkinson JE, Rinchik EM (1994) The mouse scurfy (sf) mutation is tightly linked to Gata1 and Tfe3 on the proximal X chromosome. Mamm Genome 5: 652–654PubMedCrossRefGoogle Scholar
  18. 18.
    Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73PubMedCrossRefGoogle Scholar
  19. 19.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27: 20–21PubMedCrossRefGoogle Scholar
  20. 20.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27: 18–20PubMedCrossRefGoogle Scholar
  21. 21.
    Qin S, Cobbold SP, Pope H, Elliott J, Kioussis D, Davies J, Waldmann H (1993) “Infectious” transplantation tolerance. Science 259: 974–977PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10: 1969–1980PubMedCrossRefGoogle Scholar
  23. 23.
    Shevach EM (2006) From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25: 195–201PubMedCrossRefGoogle Scholar
  24. 24.
    Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–296PubMedCrossRefGoogle Scholar
  25. 25.
    Klein L, Khazaie K, von Boehmer H (2003) In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 100: 8886–8891PubMedCrossRefGoogle Scholar
  26. 26.
    Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF (2001) Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276: 37672–37679PubMedCrossRefGoogle Scholar
  27. 27.
    Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4: 337–342PubMedCrossRefGoogle Scholar
  28. 28.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061PubMedCrossRefGoogle Scholar
  29. 29.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336PubMedCrossRefGoogle Scholar
  30. 30.
    Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106: R75–81PubMedCrossRefGoogle Scholar
  31. 31.
    Maeda H, Fujimoto S, Greene MI (2000) Suppressor T cells regulate the nonanergic cell population that remains after peripheral tolerance is induced to the Mls-1 antigen in T cell receptor Vbeta 8.1 transgenic mice. Proc Natl Acad Sci USA 97: 13257–13262PubMedCrossRefGoogle Scholar
  32. 32.
    Saouaf SJ, Brennan PJ, Shen Y, Greene MI (2003) Mechanisms of peripheral immune tolerance: conversion of the immune to the unresponsive phenotype. Immunol Res 28: 193–199PubMedCrossRefGoogle Scholar
  33. 33.
    Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, Basu S, Riley JL, Hancock WW, Shen Y et al (2007) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104: 4571–4576PubMedCrossRefGoogle Scholar
  34. 34.
    Weiner DB, Williams WV, Siegel RM, Jerrold-Jones S, Greene MI (1988) Molecular characterization of suppressor T cells. Transplant Proc 20: 1151–1153PubMedGoogle Scholar
  35. 35.
    Schatten S, Granstein RD, Drebin JA, Greene MI (1984) Suppressor T cells and the immune response to tumors. Crit Rev Immunol 4: 335–379PubMedGoogle Scholar
  36. 36.
    Hirai Y, Dohi Y, Sy MS, Greene MI, Nisonoff A (1981) Suppressor T cells induced by idiotype-coupled cells function across an allotype barrier. J Immunol 126: 2064–2066PubMedGoogle Scholar
  37. 37.
    Bromberg JS, Benacerraf B, Greene MI (1981) Mechanisms of regulation of cell-mediated immunity. VII. Suppressor T cells induced by suboptimal doses of antigen plus an I-J-specific allogeneic effect. J Exp Med 153: 437–449PubMedCrossRefGoogle Scholar
  38. 38.
    Greene MI, Bach BA, Benacerraf B (1979) Mechanisms of regulation of cell-mediated immunity. III. The characterization of azobenzenearsonate-specific suppressor T-cellderived-suppressor factors. J Exp Med 149: 1069–1083PubMedCrossRefGoogle Scholar
  39. 39.
    Greene MI, Fujimoto S, Sehon AH (1977) Regulation of the immune response to tumor antigens. III. Characterization of thymic suppressor factor(s) produced by tumor-bearing hosts. J Immunol 119: 757–764PubMedGoogle Scholar
  40. 40.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cellmediated suppression by dendritic cells. Science 299: 1033–1036PubMedCrossRefGoogle Scholar
  41. 41.
    Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108: 253–261PubMedCrossRefGoogle Scholar
  42. 42.
    Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197: 403–411PubMedCrossRefGoogle Scholar
  43. 43.
    Lewkowicz P, Lewkowicz N, Sasiak A, Tchorzewski H (2006) Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol 177: 7155–7163PubMedGoogle Scholar
  44. 44.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886PubMedCrossRefGoogle Scholar
  45. 45.
    Wang Z, Hong J, Sun W, Xu G, Li N, Chen X, Liu A, Xu L, Sun B, Zhang JZ (2006) Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25 T cells to CD4+ Tregs. J Clin Invest 116: 2434–2441PubMedGoogle Scholar
  46. 46.
    Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad. Sci USA 102: 6449–6454PubMedCrossRefGoogle Scholar
  47. 47.
    Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212: 256–271PubMedCrossRefGoogle Scholar
  48. 48.
    Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192: 295–302PubMedCrossRefGoogle Scholar
  49. 49.
    Li B, Samanta A, Song X, Iacono KT, Brennan PJ, Chatila TA, Roncador G, Banham AH, Riley JL, Wang Q et al (2007) FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune syndrome. Int Immunol 19: 825–835PubMedCrossRefGoogle Scholar
  50. 50.
    Chae WJ, Henegariu O, Lee SK, Bothwell AL (2006) The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc Natl Acad. Sci USA 103: 9631–9636PubMedCrossRefGoogle Scholar
  51. 51.
    Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, Ziegler SF (2006) Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177: 3133–3142PubMedGoogle Scholar
  52. 52.
    Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935PubMedCrossRefGoogle Scholar
  53. 53.
    Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genomewide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940PubMedCrossRefGoogle Scholar
  54. 54.
    Bettelli E, Dastrange M, Oukka M (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 102: 5138–5143PubMedCrossRefGoogle Scholar
  55. 55.
    Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126: 375–387PubMedCrossRefGoogle Scholar
  56. 56.
    Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem 278: 24259–24268PubMedCrossRefGoogle Scholar
  57. 57.
    Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685–689PubMedCrossRefGoogle Scholar
  58. 58.
    Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24: 209–226PubMedCrossRefGoogle Scholar
  59. 59.
    Li B, Greene MI (2007) FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 6: 1432–1436PubMedGoogle Scholar
  60. 60.
    Li B, Saouaf SJ, Samanta A, Shen Y, Hancock WW, Greene MI (2007) Biochemistry and therapeutic implications of understanding mechanisms underlying FOXP3 activity. Curr. Opin Immunol, DOI 10.1016/J.COI.2007.07.006Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Bin Li
    • 1
  • Xiaomin Song
    • 1
  • Arabinda Samanta
    • 1
  • Kathryn Bembas
    • 1
  • Amy Brown
    • 1
  • Geng Zhang
    • 1
  • Makoto Katsumata
    • 1
  • Yuan Shen
    • 1
  • Sandra J. Saouaf
    • 1
  • Mark I. Greene
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations