Uniformization by Lauricella Functions — An Overview of the Theory of Deligne-Mostow

Part of the Progress in Mathematics book series (PM, volume 260)


This is a survey of the Deligne-Mostow theory of Lauricella functions, or what almost amounts to the same, of the period map for cyclic coverings of the Riemann sphere.


Lauricella function ball quotient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Allcock, New complex-and quaternion-hyperbolic reflection groups, Duke Math. J. 103 (2000), 303–333.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. Allcock, The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000), 283–301.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Barthel, F. Hirzebruch, T. Höfer, Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig-Wiesbaden (1987).Google Scholar
  4. [4]
    W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).Google Scholar
  5. [5]
    P.B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1, n) by Deligne and Mostow, Bull. Amer. Math. Soc. 32 (1995), 88–105.MathSciNetGoogle Scholar
  6. [6]
    W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at Scholar
  7. [7]
    W. Couwenberg, G. Heckman, E. Looijenga, Geometric structures on the complement of a projective arrangement, Publ. Math. IHES 101 (2005), pp. 69–161, also available at arXiv math.AG/0311404.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Deligne, G.D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES 63 (1986), 1–89.Google Scholar
  9. [9]
    P. Deligne, G.D. Mostow, Commensurabilities among lattices in PU(1, n), Ann. of Math. Studies 132, Princeton U.P., Princeton, 1993.Google Scholar
  10. [10]
    B.R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.Google Scholar
  11. [11]
    F.C. Kirwan, R. Lee, S.H. Weintraub, Quotients of the complex ball by discrete groups, Pacific J. of Math. 130 (1987), 115–141.zbMATHMathSciNetGoogle Scholar
  12. [12]
    G.D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91–106.zbMATHMathSciNetGoogle Scholar
  13. [13]
    G.D. Mostow, On discontinuous action of monodromy groups on the complex n-ball, J. Amer. Math. Soc. 1 (1988), 555–586.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.K. Sauter, Jr., Isomorphisms among monodromy groups and applications to lattices in PU(1, 2), Pacific J. Math. 146 (1990), 331–384.zbMATHMathSciNetGoogle Scholar
  15. [15]
    H.A. Schwarz, Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. f. d. reine u. angew. Math. 75 (1873), 292–335.Google Scholar
  16. [16]
    W.P. Thurston, Shapes of polyhedra and triangulations of the sphere, Geometry & Topology Monographs 1 (1998), 511–549.MathSciNetCrossRefGoogle Scholar
  17. [17]
    A.N. Varchenko: Hodge filtration of hypergeometric integrals associated with an affine configuration of general position and a local Torelli theorem, in: I.M. Gelfand Seminar, Adv. Soviet Math. 16; Part 2, 167–177, Amer. Math. Soc., Providence, RI, 1993.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  1. 1.Departement WiskundeBetafaculteit Universiteit UtrechtUtrechtNederland

Personalised recommendations