Skip to main content

Uniformization by Lauricella Functions — An Overview of the Theory of Deligne-Mostow

  • Chapter
Arithmetic and Geometry Around Hypergeometric Functions

Part of the book series: Progress in Mathematics ((PM,volume 260))

Abstract

This is a survey of the Deligne-Mostow theory of Lauricella functions, or what almost amounts to the same, of the period map for cyclic coverings of the Riemann sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Allcock, New complex-and quaternion-hyperbolic reflection groups, Duke Math. J. 103 (2000), 303–333.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Allcock, The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000), 283–301.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Barthel, F. Hirzebruch, T. Höfer, Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig-Wiesbaden (1987).

    Google Scholar 

  4. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).

    Google Scholar 

  5. P.B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1, n) by Deligne and Mostow, Bull. Amer. Math. Soc. 32 (1995), 88–105.

    MathSciNet  Google Scholar 

  6. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/~w.couwenberg/.

    Google Scholar 

  7. W. Couwenberg, G. Heckman, E. Looijenga, Geometric structures on the complement of a projective arrangement, Publ. Math. IHES 101 (2005), pp. 69–161, also available at arXiv math.AG/0311404.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Deligne, G.D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math. IHES 63 (1986), 1–89.

    Google Scholar 

  9. P. Deligne, G.D. Mostow, Commensurabilities among lattices in PU(1, n), Ann. of Math. Studies 132, Princeton U.P., Princeton, 1993.

    Google Scholar 

  10. B.R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.

    Google Scholar 

  11. F.C. Kirwan, R. Lee, S.H. Weintraub, Quotients of the complex ball by discrete groups, Pacific J. of Math. 130 (1987), 115–141.

    MATH  MathSciNet  Google Scholar 

  12. G.D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91–106.

    MATH  MathSciNet  Google Scholar 

  13. G.D. Mostow, On discontinuous action of monodromy groups on the complex n-ball, J. Amer. Math. Soc. 1 (1988), 555–586.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.K. Sauter, Jr., Isomorphisms among monodromy groups and applications to lattices in PU(1, 2), Pacific J. Math. 146 (1990), 331–384.

    MATH  MathSciNet  Google Scholar 

  15. H.A. Schwarz, Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. f. d. reine u. angew. Math. 75 (1873), 292–335.

    Google Scholar 

  16. W.P. Thurston, Shapes of polyhedra and triangulations of the sphere, Geometry & Topology Monographs 1 (1998), 511–549.

    Article  MathSciNet  Google Scholar 

  17. A.N. Varchenko: Hodge filtration of hypergeometric integrals associated with an affine configuration of general position and a local Torelli theorem, in: I.M. Gelfand Seminar, Adv. Soviet Math. 16; Part 2, 167–177, Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Looijenga, E. (2007). Uniformization by Lauricella Functions — An Overview of the Theory of Deligne-Mostow. In: Holzapfel, RP., Uludağ, A.M., Yoshida, M. (eds) Arithmetic and Geometry Around Hypergeometric Functions. Progress in Mathematics, vol 260. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8284-1_8

Download citation

Publish with us

Policies and ethics