Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 260))

Abstract

We show that the moduli space of 5 ordered points on ℙ1 is isomorphic to an arithmetic quotient of a complex ball by using the theory of periods of K3 surfaces. We also discuss a relation between our uniformization and the one given by Shimura [S], Terada [Te], Deligne-Mostow [DM].

Research of the author is partially supported by Grant-in-Aid for Scientific Research A-14204001, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math., 10 (1888), 47–70.

    Article  MathSciNet  Google Scholar 

  2. A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Diff. Geometry, 6 (1972), 543–560.

    MATH  MathSciNet  Google Scholar 

  3. P. Deligne, G. W. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. IHES, 63 (1986), 5–89.

    MATH  MathSciNet  Google Scholar 

  4. I. Dolgachev, Lectures on Invariant Theory, London Math. Soc. Lecture Note Ser., 296, Cambridge 2003.

    Google Scholar 

  5. I. Dolgachev, B. van Geemen, S. Kondō, A complex ball uniformaization of the moduli space of cubic surfaces via periods of K3 surfaces, math.AG/0310342, J. reine angew. Math. (to appear).

    Google Scholar 

  6. S. Kondō, A complex hyperbolic structure of the moduli space of curves of genus three, J. reine angew. Math., 525 (2000), 219–232.

    MathSciNet  MATH  Google Scholar 

  7. S. Kondō, The moduli space of curves of genus 4 and Deligne-Mostow’s complex reflection groups, Adv. Studies Pure Math., 36 (2002), Algebraic Geometry 2000, Azumino, 383–400.

    Google Scholar 

  8. S. Kondō, The moduli space of 8 points on1 and automorphic forms, to appear in the Proceedings of the Conference “Algebraic Geometry in the honor of Igor Dolgachev”.

    Google Scholar 

  9. G. W. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math. IHES, 63 (1986), 91–106.

    MATH  MathSciNet  Google Scholar 

  10. D. Mumford, K. Suominen, Introduction to the theory of moduli, Algebraic Geometry, Oslo 1970, F. Oort, ed., Wolters-Noordholff 1971.

    Google Scholar 

  11. Y. Namikawa, Periods of Enriques surfaces, Math. Ann., 270 (1985), 201–222.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Namikawa, K. Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta math., 9 (1973), 143–186.

    MATH  MathSciNet  Google Scholar 

  13. V. V. Nikulin, Integral symmetric bilinear forms and its applications, Math. USSR Izv., 14 (1980), 103–167.

    Article  MATH  Google Scholar 

  14. V. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71–135.

    Google Scholar 

  15. V. V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections, J. Soviet Math., 22 (1983), 1401–1475.

    Article  MATH  Google Scholar 

  16. I. Piatetski-Shapiro, I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., 5 (1971), 547–587.

    Article  Google Scholar 

  17. G. Shimura, On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1–14.

    MATH  MathSciNet  Google Scholar 

  18. T. Terada, Fonction hypergéométriques F 1 et fonctions automorphes, J. Math. Soc. Japan 35 (1983), 451–475; II, ibid., 37 (1985), 173–185.

    MATH  MathSciNet  Google Scholar 

  19. W. P. Thurston, Shape of polyhedra and triangulations of the sphere, Geometry & Topology Monograph, 1 (1998), 511–549.

    Article  MathSciNet  Google Scholar 

  20. E. B. Vinberg, Some arithmetic discrete groups in Lobachevskii spaces, in “Discrete subgroups of Lie groups and applications to moduli”, Tata-Oxford (1975), 323–348.

    Google Scholar 

  21. S. P. Vorontsov, Automorphisms of even lattices that arise in connection with automorphisms of algebraic K3 surfaces, Vestnik Mosk. Univ. Mathematika, 38 (1983), 19–21.

    MathSciNet  Google Scholar 

  22. T. Yamazaki, M. Yoshida, On Hirzebruch’s examples of surfaces with c 21 = 3c 2, Math. Ann., 266 (1984), 421–431.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Yukihiko Namikawa on his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Kondō, S. (2007). The Moduli Space of 5 Points on ℙ1 and K3 Surfaces. In: Holzapfel, RP., Uludağ, A.M., Yoshida, M. (eds) Arithmetic and Geometry Around Hypergeometric Functions. Progress in Mathematics, vol 260. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8284-1_7

Download citation

Publish with us

Policies and ethics