Gauss’ Hypergeometric Function

Part of the Progress in Mathematics book series (PM, volume 260)


We give a basic introduction to the properties of Gauss’ hypergeometric functions, with an emphasis on the determination of the monodromy group of the Gaussian hypergeometric equation.


Gauss hypergeometric function monodromy triangle group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AS]
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, 1970.Google Scholar
  2. [E]
    A. Erdélyi, Higher transcendental functions, Vol. I, Bateman Manuscript Project, New York, McGraw-Hill, 1953.Google Scholar
  3. [H]
    J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1992.Google Scholar
  4. [Kl]
    F. Klein, Vorlesungen über das Ikosaeder, New edition with a preface by P. Slodowy, Birkhäuser-Teubner, 1993.Google Scholar
  5. [V]
    R. Vidunas, Transformations of Gauss hypergeometric functions, J. Computational and Applied Math. 178 (2005), 473–487, arXiv: math.CA/0310436.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  1. 1.Department of MathematicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations