Advertisement

From the Power Function to the Hypergeometric Function

Chapter
Part of the Progress in Mathematics book series (PM, volume 260)

Abstract

The hypergeometric function is a slight generalization of the power fucntion. We will see this by the Schwarz map of the hypergeometric equation focussing on the behavior of this map when the local exponent-differences are purely imaginary

Keywords

Hypergeometric functions Schwarz s-function Schottky groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [IY1]
    T. Ichikawa and M. Yoshida, On Schottky groups arising from the hypergeometric equation with imaginary exponents, Proc. AMS 132 (2003), 447–454.CrossRefMathSciNetGoogle Scholar
  2. [IY2]
    T. Ichikawa and M. Yoshida, A family of Schottky groups arising from the hypergeometric equation, to appear in Proc. AMS.Google Scholar
  3. [IKSY]
    K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé — A modern theory of special functions, Vieweg Verlag, Wiesbaden, 1991.zbMATHGoogle Scholar
  4. [KY]
    M. Kaneko and M. Yoshida, The kappa function, Internat. J. Math. 14 (2003), 1003–1013.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [MY]
    K. Matsumoto and M. Yoshida, Recent progress of interesection theory for twisted (co)homology groups, Advanced Studies in Pure Math. 27 (2000), 217–237.MathSciNetGoogle Scholar
  6. [SY]
    T. Sasaki and M. Yoshida, A geometric study of the hypergeometric fucntion with imaginary exponents, Experimental Math. 10 (2000), 321–330.MathSciNetGoogle Scholar
  7. [Sch1]
    F. Schilling, Beiträge sur geometrischen Theorie der Schwarzschen s-Funktion, Math. Annalen 44 (1894), 161–260.CrossRefMathSciNetGoogle Scholar
  8. [Sch2]
    F. Schilling, Die Geometrischen Theorie der Schwarzschen s-Funktion für komplexe Exponenten, Math. Annalen 46 (1895), 62–76, 529–538.CrossRefGoogle Scholar
  9. [Sch]
    F. Schottky, Über eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments univerändert bleibt, J. Reine Angew. Math. 101 (1887) 227–272.Google Scholar
  10. [Yo1]
    M. Yoshida, Fuchsian Differential Equations, Vieweg Verlag, 1987.Google Scholar
  11. [Yo2]
    M. Yoshida, Hypergeometric Functions, My Love, Vieweg Verlag, 1997.Google Scholar
  12. [Yo3]
    M. Yoshida, A naive-topological study of the contiguity relations of the hypergeometric function. To appear in Bedlewo Proceedings.Google Scholar
  13. [Zap]
    M. Zapf Abbildungseigenschaften allgemeiner Dreiecksfunktionen, Diplomarbeit der Universität Frankfurt, 1994.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  1. 1.Department of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations