Skip to main content

From the Power Function to the Hypergeometric Function

  • Chapter
Arithmetic and Geometry Around Hypergeometric Functions

Part of the book series: Progress in Mathematics ((PM,volume 260))

Abstract

The hypergeometric function is a slight generalization of the power fucntion. We will see this by the Schwarz map of the hypergeometric equation focussing on the behavior of this map when the local exponent-differences are purely imaginary

The author is grateful to the MPIM in Bonn and the JSPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ichikawa and M. Yoshida, On Schottky groups arising from the hypergeometric equation with imaginary exponents, Proc. AMS 132 (2003), 447–454.

    Article  MathSciNet  Google Scholar 

  2. T. Ichikawa and M. Yoshida, A family of Schottky groups arising from the hypergeometric equation, to appear in Proc. AMS.

    Google Scholar 

  3. K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé — A modern theory of special functions, Vieweg Verlag, Wiesbaden, 1991.

    MATH  Google Scholar 

  4. M. Kaneko and M. Yoshida, The kappa function, Internat. J. Math. 14 (2003), 1003–1013.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Matsumoto and M. Yoshida, Recent progress of interesection theory for twisted (co)homology groups, Advanced Studies in Pure Math. 27 (2000), 217–237.

    MathSciNet  Google Scholar 

  6. T. Sasaki and M. Yoshida, A geometric study of the hypergeometric fucntion with imaginary exponents, Experimental Math. 10 (2000), 321–330.

    MathSciNet  Google Scholar 

  7. F. Schilling, Beiträge sur geometrischen Theorie der Schwarzschen s-Funktion, Math. Annalen 44 (1894), 161–260.

    Article  MathSciNet  Google Scholar 

  8. F. Schilling, Die Geometrischen Theorie der Schwarzschen s-Funktion für komplexe Exponenten, Math. Annalen 46 (1895), 62–76, 529–538.

    Article  Google Scholar 

  9. F. Schottky, Über eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments univerändert bleibt, J. Reine Angew. Math. 101 (1887) 227–272.

    Google Scholar 

  10. M. Yoshida, Fuchsian Differential Equations, Vieweg Verlag, 1987.

    Google Scholar 

  11. M. Yoshida, Hypergeometric Functions, My Love, Vieweg Verlag, 1997.

    Google Scholar 

  12. M. Yoshida, A naive-topological study of the contiguity relations of the hypergeometric function. To appear in Bedlewo Proceedings.

    Google Scholar 

  13. M. Zapf Abbildungseigenschaften allgemeiner Dreiecksfunktionen, Diplomarbeit der Universität Frankfurt, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Yoshida, M. (2007). From the Power Function to the Hypergeometric Function. In: Holzapfel, RP., Uludağ, A.M., Yoshida, M. (eds) Arithmetic and Geometry Around Hypergeometric Functions. Progress in Mathematics, vol 260. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8284-1_14

Download citation

Publish with us

Policies and ethics