Advertisement

Orbifolds and Their Uniformization

Chapter
Part of the Progress in Mathematics book series (PM, volume 260)

Abstract

This is an introduction to complex orbifolds with an emphasis on orbifolds in dimension 2 and covering relations between them.

Keywords

Orbifold orbiface uniformization ball-quotient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Barthel, F. Hirzebruch, Th. Höfer, Th., Geradenconfigurationen und algebrische Flächen. Aspects of Mathematics D 4, Vieweg, Braunschweig-Wiesbaden, 1986.Google Scholar
  2. [2]
    S. Bundgaard, J. Nielsen, On normal subgroups of finite index in F-groups, Math. Tidsskrift B (1951), 56–58.Google Scholar
  3. [3]
    E.V. Brieskorn, Examples of singular normal complex spaces which are topological manifolds, Proc. Natl. Acad. Sci. USA 55 (1966), 1395–1397.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic Geometry and Topology, A sympos. in honor of S. Lefschetz, Princeton University Press, 1957, 90–102.Google Scholar
  5. [5]
    C. Chevalley, Invariants of finite groups generated by reflections, Am. J. Math. 77 (1955), 778–782.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R.H. Fox, On Fenchel’s conjecture about F-groups, Math. Tidsskrift B (1952), 61–65.Google Scholar
  7. [7]
    R.H. Fox, Covering spaces with singularities, Princeton Math. Ser. 12 (1957), 243–257.zbMATHGoogle Scholar
  8. [8]
    E. Hironaka, Abelian coverings of the complex projective plane branched along configurations of real lines, Mem. Am. Math. Soc. 502 (1993).Google Scholar
  9. [9]
    F. Hirzebruch, Arrangements of lines and algebraic surfaces, Progress in Mathematics 36, Birkhäuser, Boston, 1983, 113–140.Google Scholar
  10. [10]
    R.-P. Holzapfel, V. Vladov, Quadric-line configurations degenerating plane Picard-Einstein metrics I–II. Sitzungsber. d. Berliner Math. Ges. 1997–2000, Berlin, 2001, 79–142.Google Scholar
  11. [11]
    B. Hunt, Complex manifold geography in dimension 2 and 3. J. Differ. Geom. 30 no. 1 (1989), 51–153.zbMATHGoogle Scholar
  12. [12]
    J. Kaneko, S. Tokunaga, M. Yoshida, Complex crystallographic groups II, J. Math. Soc. Japan 34 no. 4 (1982), 581–593.MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Kato, On uniformizations of orbifolds. Adv. Stud. Pure Math. 9 (1987), 149–172.Google Scholar
  14. [14]
    R. Kobayashi, Uniformization of complex surfaces, in: Kähler metric and moduli spaces, Adv. Stud. Pure Math. 18 no. 2 (1990), 313–394.Google Scholar
  15. [15]
    D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22.zbMATHMathSciNetGoogle Scholar
  16. [16]
    M. Namba, On finite Galois covering germs, Osaka J.Math. 28 no. 1 (1991), 27–35.zbMATHMathSciNetGoogle Scholar
  17. [17]
    M. Namba, Branched coverings and algebraic functions, Pitman Research Notes in Mathematics Series 161, 1987.Google Scholar
  18. [18]
    M. Oka, Some plane curves whose complements have non-abelian fundamental groups, Math. Ann. 218 (1975), 55–65.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    J.-P. Serre, Revêtements ramifiés du plan projectif Séminaire Bourbaki 204, 1960.Google Scholar
  20. [20]
    G.C. Shephard, J.A. Todd, Finite unitary reflection groups, Can. J. Math. 6 (1954), 274–304.zbMATHMathSciNetGoogle Scholar
  21. [21]
    A.M. Uludağ, Coverings of the plane by K3 surfaces, Kyushu J. Math. 59 no. 2 (2005), 393–419.CrossRefMathSciNetzbMATHGoogle Scholar
  22. [22]
    A.M. Uludağ, Covering relations between ball-quotient orbifolds, Math. An. 308 no. 3 (2004), 503–523.CrossRefGoogle Scholar
  23. [23]
    A.M. Uludağ, On Branched Galois Coverings ofn by products of discs, International J. Math. 4 no. 10 (2003), 1025–1037.Google Scholar
  24. [24]
    A.M. Uludağ, Fundamental groups of a family of rational cuspidal plane curves, Ph.D. thesis, Institut Fourier 2000.Google Scholar
  25. [25]
    M. Yoshida, Fuchsian Differential Equations, Vieweg Aspekte der Math., 1987.Google Scholar
  26. [26]
    O. Zarsiki, On the Purity of the Branch Locus of Algebraic Functions Proc. Natl. Acad. Sci. USA. 44 no. 8 (1958), 791–796.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  1. 1.Mathematics DepartmentGalatasaray UniversityOrtaköy/IstanbulTurkey

Personalised recommendations