Skip to main content

On the Spectrum of the Self-adjoint Extensions of a Nonnegative Linear Relation of Defect One in a Krein Space

  • Conference paper
Book cover Operator Theory in Inner Product Spaces

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 175))

Abstract

A nonnegative symmetric linear relation A 0 with defect one in a Krein space H has self-adjoint extensions which are not nonnegative. If the resolvent set of such an extension A is not empty, A has a so-called exceptional eigenvalue α. For α ≠ 0, ∞ this means that α is an eigenvalue in the open upper half-plane, or a positive eigenvalue with a nonpositive eigenvector, or a negative eigenvalue with a nonnegative eigenvector. In this paper we study these exceptional eigenvalues and their dependence on a parameter if the selfadjoint extensions of A 0 are parametrized according to M. G. Krein’s resolvent formula. An essential tool is a family of generalized Nevanlinna functions of the class N 1 and their zeros or generalized zeros of nonpositive type.

The first author was supported by the Hochschul- und Wissenschaftsprogramm des Bundes und der Länder of Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N., Donoghue, W.F.: On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. d’Analyse Math. 5 (1956–57), 321–388.

    Article  Google Scholar 

  2. Daho, K., Langer, H.: Matrix functions of the class N κ, Math. Nachr. 120 (1985), 275–294.

    Article  MATH  MathSciNet  Google Scholar 

  3. Daho, K., Langer, H.: Sturm-Liouville operators with an indefinite weight function: the periodic case, Radovi Matematički 2 (1986), 165–188.

    MATH  MathSciNet  Google Scholar 

  4. Derkach, V., Hassi, S., de Snoo, H.S.V.: Rank one perturbations in a Pontryagin space with one negative square, J. Funct. Anal. 188 (2002), 317–349.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dijksma, A., de Snoo, H.S.V.: Symmetric and selfadjoint relations in Krein spaces I, Operator Theory: Advances and Applications, vol. 24 (1987), Birkhäuser Verlag Basel, 145–166.

    Google Scholar 

  6. Dijksma, A., de Snoo, H.S.V.: Symmetric and selfadjoint relations in Krein spaces II, Ann. Acad. Sci. Fenn., Ser. A. I. Mathematica 12 (1987), 199–216.

    MATH  Google Scholar 

  7. Dijksma, A., Langer, H., Shondin, Yu., Zeinstra, C.: Selfadjoint differential operators with inner singularities and Pontryagin spaces, Operator Theory: Adv. Appl., vol. 118, Birkhäuser Verlag, Basel, 2000, 105–175.

    Google Scholar 

  8. Dijksma, A., Luger, A., Shondin, Yu.: Minimal models for N k -functions, Operator Theory: Adv. Appl., vol. 163, Birkhäuser Verlag, Basel, 2006, 97–134.

    Google Scholar 

  9. Jonas, P.: A class of operator-valued meromorphic functions on the unit disc, Ann. Acad. Sci. Fenn. Ser. A. I: Mathematica 17 (1992), 257–284.

    MATH  MathSciNet  Google Scholar 

  10. Jonas, P.: Operator representations of definitizable functions, Ann. Acad. Sci. Fenn. Ser. A. I: Mathematica 25 (2000), 41–72.

    MATH  MathSciNet  Google Scholar 

  11. Jonas, P.: On locally definite operators in Krein spaces, in: Spectral Theory and Its Applications, Bucharest, Theta 2003, 95–127.

    Google Scholar 

  12. Jonas, P., Langer, H.: Some questions in the perturbation theory of J-nonnegative operators in Krein spaces, Math. Nachr. 114 (1983), 205–226.

    Article  MATH  MathSciNet  Google Scholar 

  13. Jonas, P., Langer, H.: A model for π-self-adjoint operators and a special linear pencil, Integral Equations Operator Theory 8 (1985), 13–35.

    Article  MATH  MathSciNet  Google Scholar 

  14. Jonas, P., Langer, H.: Selfadjoint extensions of a closed linear relation of defect one in a Krein space, Operator Theory: Advances and Applications, vol. 80 (1995), Birkhäuser Verlag Basel, 176–205.

    Google Scholar 

  15. Kac, I.S., Krein, M.G.: R-functions-analytic functions mapping the upper half-plane into itself, Supplement I of the Russian translation of the book by F.V. Atkinson, Discrete and continuous boundary problems, Moscow 1968. English translation: Amer. Math. Soc. Transl. (2) vol. 103 (1974), 1–18.

    Google Scholar 

  16. Krein, M.G., Langer, H.: On the spectral function of a selfadjoint operator in a space with an indefinite metric, Dokl. Akad. Nauk SSSR 152 (1963), 39–42 (Russian)

    MathSciNet  Google Scholar 

  17. Krein, M.G., Langer, H.: Some propositions on analytic matrix functions related to the theory of operators in the space Πκ, Acta Sci. Math. 43 (1981), 181–205.

    MATH  MathSciNet  Google Scholar 

  18. Langer, H.: Spektraltheorie linearer Operatoren in J-Räumen und einige Anwendungen auf die Schar L(λ) = λ 2 I + λB + C, Habilitationsschrift Technische Universität Dresden, 1965.

    Google Scholar 

  19. Langer, H.: Characterization of generalized zeros of negative type of functions of the class N κ, Operator Theory: Advances and Applications, vol. 17 (1986), Birkhäuser Verlag Basel, 202–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Jonas, P., Langer, H. (2007). On the Spectrum of the Self-adjoint Extensions of a Nonnegative Linear Relation of Defect One in a Krein Space. In: Förster, KH., Jonas, P., Langer, H., Trunk, C. (eds) Operator Theory in Inner Product Spaces. Operator Theory: Advances and Applications, vol 175. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8270-4_8

Download citation

Publish with us

Policies and ethics