Signaling pathways in rheumatoid arthritis

  • Jean-Marc Waldburger
  • Gary S. Firestein
Part of the Progress in Inflammation Research book series (PIR)


Signaling pathways orchestrate the inflammatory response by regulating various cellular functions such as programmed cell death, cell differentiation and proliferation or secretion of signaling molecules. They are classically activated by ligand engagement of surface receptors but increasing evidence suggests that intracellular proteins can also detect danger signals. Protection from pathogens, chemical or physical injury, or neoplasia relies on a tightly regulated activation of these mechanisms. The same signaling cascades sometimes escape from normal controls and increase the production of cytokines, proteases, growth factors and chemokines up to harmful levels, leading to an autodestructive process as seen in rheumatoid arthritis. Mapping the hierarchy of these pathways identifies which specific targets can be inhibited to safely reduce the levels of inflammatory molecules and reset the homeostasis of the organism.


Rheumatoid Arthritis Familial Mediterranean Fever Rheumatoid Arthritis Synovial Fibroblast Familial Cold Autoinflammatory Syndrome Lymphoid Tyrosine Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burger D, Dayer JM, Palmer G, Gabay C (2006) Is IL-1 a good therapeutic target in the treatment of arthritis? Best Pract Res Clin Rheumatol 20: 879–896PubMedCrossRefGoogle Scholar
  2. 2.
    Ji H, Pettit A, Ohmura K, Ortiz-Lopez A, Duchatelle V, Degott C, Gravallese E, Mathis D, Benoist C (2002) Critical roles for interleukin 1 and tumor necrosis factor α in antibody-induced arthritis. J Exp Med 196: 77–85PubMedCrossRefGoogle Scholar
  3. 3.
    Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A, Ikuse T, Asano M, Iwakura Y (2000) Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 191: 313–320PubMedCrossRefGoogle Scholar
  4. 4.
    Bresnihan B, varo-Gracia JM, Cobby M, Doherty M, Domljan Z, Emery P, Nuki G, Pavelka K, Rau R, Rozman B et al (1998) Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 41: 2196–2204PubMedCrossRefGoogle Scholar
  5. 5.
    Choe JY, Crain B, Wu SR, Corr M (2003) Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 197: 537–542PubMedCrossRefGoogle Scholar
  6. 6.
    Colotta F, Re F, Muzio M, Bertini R, Polentarutti N, Sironi M, Giri JG, Dower SK, Sims JE, Mantovani A (1993) Interleukin-1 type II receptor: A decoy target for IL-1 that is regulated by IL-4. Science 261: 472–475PubMedCrossRefGoogle Scholar
  7. 7.
    Sims JE, Gayle MA, Slack JL, Alderson MR, Bird TA, Giri JG, Colotta F, Re F, Mantovani A, Shanebeck K et al (1993) Interleukin 1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci USA 90: 6155–6159PubMedCrossRefGoogle Scholar
  8. 8.
    Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197: 263–268PubMedCrossRefGoogle Scholar
  9. 9.
    Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191–202PubMedCrossRefGoogle Scholar
  10. 10.
    Bartfai T, Behrens MM, Gaidarova S, Pemberton J, Shivanyuk A, Rebek J Jr (2003) A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proc Natl Acad Sci USA 100: 7971–7976PubMedCrossRefGoogle Scholar
  11. 11.
    Feldmann M, Maini RN (2001) Anti-TNF a therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol 19: 163–196PubMedCrossRefGoogle Scholar
  12. 12.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol 3: 745–756PubMedCrossRefGoogle Scholar
  13. 13.
    Bai S, Liu H, Chen KH, Eksarko P, Perlman H, Moore TL, Pope RM (2004) NF-κB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumor necrosis factor α-mediated apoptosis. Arthritis Rheum 50: 3844–3855PubMedCrossRefGoogle Scholar
  14. 14.
    De SE, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414: 308–313CrossRefGoogle Scholar
  15. 15.
    Dunne A, O’Neill LA (2003) The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense. Sci STKE 2003: re3Google Scholar
  16. 16.
    Radstake TR, Roelofs MF, Jenniskens YM, Oppers-Walgreen B, van Riel PL, Barrera P, Joosten LA, van den Berg WB (2004) Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-γ. Arthritis Rheum 50: 3856–3865PubMedCrossRefGoogle Scholar
  17. 17.
    Roelofs MF, Joosten LA, bdollahi-Roodsaz S, van Lieshout AW, Sprong T, van den Hoogen FH, van den Berg WB, Radstake TR (2005) The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum 52: 2313–2322PubMedCrossRefGoogle Scholar
  18. 18.
    Brentano F, Schorr O, Gay RE, Gay S, Kyburz D (2005) RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum 52: 2656–2665PubMedCrossRefGoogle Scholar
  19. 19.
    Sweeney SE, Mo L, Firestein GS (2007) Antiviral gene expression in rheumatoid arthritis: Role of IKKε and interferon regulatory factor 3. Arthritis Rheum 56: 743–752PubMedCrossRefGoogle Scholar
  20. 20.
    Sweeney SE, Hammaker D, Boyle DL, Firestein GS (2005) Regulation of c-Jun phosphorylation by the IκB kinase-ε complex in fibroblast-like synoviocytes. J Immunol 174: 6424–6430PubMedGoogle Scholar
  21. 21.
    Kyburz D, Rethage J, Seibl R, Lauener R, Gay RE, Carson DA, Gay S (2003) Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by tolllike receptor signaling. Arthritis Rheum 48: 642–650PubMedCrossRefGoogle Scholar
  22. 22.
    Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416: 603–607PubMedCrossRefGoogle Scholar
  23. 23.
    Deng GM, Verdrengh M, Liu ZQ, Tarkowski A (2000) The major role of macrophages and their product tumor necrosis factor α in the induction of arthritis triggered by bacterial DNA containing CpG motifs. Arthritis Rheum 43: 2283–2289PubMedCrossRefGoogle Scholar
  24. 24.
    Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem Google Scholar
  25. 25.
    Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: Intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31–40PubMedCrossRefGoogle Scholar
  26. 26.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29: 301–305PubMedCrossRefGoogle Scholar
  27. 27.
    Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26: 433–443PubMedCrossRefGoogle Scholar
  28. 28.
    Miggin SM, Palsson-McDermott E, Dunne A, Jefferies C, Pinteaux E, Banahan K, Murphy C, Moynagh P, Yamamoto M, Akira S et al (2007) NF-κB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA 104: 3372–3377PubMedCrossRefGoogle Scholar
  29. 29.
    Eckmann L, Karin M (2005) NOD2 and Crohn’s disease: Loss or gain of function? Immunity 22: 661–667PubMedCrossRefGoogle Scholar
  30. 30.
    Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440: 1064–1068PubMedCrossRefGoogle Scholar
  31. 31.
    Razmara M, Srinivasula SM, Wang L, Poyet JL, Geddes BJ, DiStefano PS, Bertin J, Alnemri ES (2002) CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem 277: 13952–13958PubMedCrossRefGoogle Scholar
  32. 32.
    Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc Natl Acad Sci USA 103: 9982–9987PubMedCrossRefGoogle Scholar
  33. 33.
    Dinarello CA (2007) A signal for the caspase-1 inflammasome free of TLR. Immunity 26: 383–385PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL, Anderson JP, Wanderer AA, Firestein GS (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364: 1779–1785PubMedCrossRefGoogle Scholar
  35. 35.
    Aldea A, Campistol JM, Arostegui JI, Rius J, Maso M, Vives J, Yague J (2004) A severe autosomal-dominant periodic inflammatory disorder with renal AA amyloidosis and colchicine resistance associated to the MEFV H478Y variant in a Spanish kindred: An unusual familial Mediterranean fever phenotype or another MEFV-associated periodic inflammatory disorder? Am J Med Genet A 124: 67–73CrossRefGoogle Scholar
  36. 36.
    Rosengren S, Mueller JL, Anderson JP, Niehaus BL, Misaghi A, Anderson S, Boyle DL, Hoffman HM (2007) Monocytes from familial cold autoinflammatory syndrome patients are activated by mild hypothermia. J Allergy Clin Immunol 119: 991–996PubMedCrossRefGoogle Scholar
  37. 37.
    Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, Russell A, Dougados M, Emery P, Nuamah IF et al (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349: 1907–1915PubMedCrossRefGoogle Scholar
  38. 38.
    Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426: 454–460PubMedCrossRefGoogle Scholar
  39. 39.
    Nel AE (2002) T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J Allergy Clin Immunol 109: 758–770PubMedCrossRefGoogle Scholar
  40. 40.
    Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A (1999) T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283: 680–682PubMedCrossRefGoogle Scholar
  41. 41.
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36: 337–338PubMedCrossRefGoogle Scholar
  42. 42.
    Vang T, Congia M, Macis MD, Musumeci L, Orru V, Zavattari P, Nika K, Tautz L, Tasken K, Cucca F et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37: 1317–1319PubMedCrossRefGoogle Scholar
  43. 43.
    Morgan ME, Flierman R, van Duivenvoorde LM, Witteveen HJ, van EW, van Laar JM, de Vries RR, Toes RE (2005) Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 52: 2212–2221PubMedCrossRefGoogle Scholar
  44. 44.
    Beyersdorf N, Hanke T, Kerkau T, Hunig T (2006) CD28 superagonists put a break on autoimmunity by preferentially activating CD4+CD25+ regulatory T cells. Autoimmun Rev 5: 40–45PubMedCrossRefGoogle Scholar
  45. 45.
    Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355: 1018–1028PubMedCrossRefGoogle Scholar
  46. 46.
    Weil R, Israel A (2006) Deciphering the pathway from the TCR to NF-κB. Cell Death Differ 13: 826–833PubMedCrossRefGoogle Scholar
  47. 47.
    Healy AM, Izmailova E, Fitzgerald M, Walker R, Hattersley M, Silva M, Siebert E, Terkelsen J, Picarella D, Pickard MD et al (2006) PKC-theta-deficient mice are protected from Th1-dependent antigen-induced arthritis. J Immunol 177: 1886–1893PubMedGoogle Scholar
  48. 48.
    Han Z, Boyle DL, Manning AM, Firestein GS (1998) AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28: 197–208PubMedCrossRefGoogle Scholar
  49. 49.
    Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor-κB in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum 38: 1762–1770PubMedCrossRefGoogle Scholar
  50. 50.
    Miyazawa K, Mori A, Yamamoto K, Okudaira H (1998) Constitutive transcription of the human interleukin-6 gene by rheumatoid synoviocytes: Spontaneous activation of NF-κB and CBF1. Am J Pathol 152: 793–803PubMedGoogle Scholar
  51. 51.
    Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: A treasure trove for drug development. Nat Rev Drug Discov 3: 17–26PubMedCrossRefGoogle Scholar
  52. 52.
    Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280–288PubMedCrossRefGoogle Scholar
  53. 53.
    Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu LC, Cao Y, Schett G, Wagner EF, Karin M (2005) IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J Exp Med 201: 1677–1687PubMedCrossRefGoogle Scholar
  54. 54.
    Gilmore TD, Herscovitch M (2006) Inhibitors of NF-κB signaling: 785 and counting. Oncogene 25: 6887–6899PubMedCrossRefGoogle Scholar
  55. 55.
    Andreakos E, Smith C, Kiriakidis S, Monaco C, de MR, Brennan FM, Paleolog E, Feldmann M, Foxwell BM (2003) Heterogeneous requirement of IκB kinase 2 for inflammatory cytokine and matrix metalloproteinase production in rheumatoid arthritis: Implications for therapy. Arthritis Rheum 48: 1901–1912PubMedCrossRefGoogle Scholar
  56. 56.
    Tak PP, Gerlag DM, Aupperle KR, van de Geest DA, Overbeek M, Bennett BL, Boyle DL, Manning AM, Firestein GS (2001) Inhibitor of nuclear factor κB kinase β is a key regulator of synovial inflammation. Arthritis Rheum 44: 1897–1907PubMedCrossRefGoogle Scholar
  57. 57.
    McIntyre KW, Shuster DJ, Gillooly KM, Dambach DM, Pattoli MA, Lu P, Zhou XD, Qiu Y, Zusi FC, Burke JR (2003) A highly selective inhibitor of IκB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum 48: 2652–2659PubMedCrossRefGoogle Scholar
  58. 58.
    Lawrence T, Bebien M, Liu GY, Nizet V, Karin M (2005) IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434: 1138–1143PubMedCrossRefGoogle Scholar
  59. 59.
    Swinney DC, Xu YZ, Scarafia LE, Lee I, Mak AY, Gan QF, Ramesha CS, Mulkins MA, Dunn J, So OY et al (2002) A small molecule ubiquitination inhibitor blocks NF-κB-dependent cytokine expression in cells and rats. J Biol Chem 277: 23573–23581PubMedCrossRefGoogle Scholar
  60. 60.
    Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS, Wolf RE, Huang J, Brand S, Elliott PJ et al (1998) Role of the proteasome and NF-κB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95: 15671–15676PubMedCrossRefGoogle Scholar
  61. 61.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352: 2487–2498PubMedCrossRefGoogle Scholar
  62. 62.
    Kawakami A, Nakashima T, Sakai H, Hida A, Urayama S, Yamasaki S, Nakamura H, Ida H, Ichinose Y, Aoyagi T et al (1999) Regulation of synovial cell apoptosis by proteasome inhibitor. Arthritis Rheum 42: 2440–2448PubMedCrossRefGoogle Scholar
  63. 63.
    Blackwell NM, Sembi P, Newson JS, Lawrence T, Gilroy DW, Kabouridis PS (2004) Reduced infiltration and increased apoptosis of leukocytes at sites of inflammation by systemic administration of a membrane-permeable IκBα repressor. Arthritis Rheum 50: 2675–2684PubMedCrossRefGoogle Scholar
  64. 64.
    Wakamatsu K, Nanki T, Miyasaka N, Umezawa K, Kubota T (2005) Effect of a small molecule inhibitor of nuclear factor-κB nuclear translocation in a murine model of arthritis and cultured human synovial cells. Arthritis Res Ther 7: R1348–R1359PubMedCrossRefGoogle Scholar
  65. 65.
    Tomita T, Takeuchi E, Tomita N, Morishita R, Kaneko M, Yamamoto K, Nakase T, Seki H, Kato K, Kaneda Y et al (1999) Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor κB decoy oligodeoxynucleotides as a gene therapy. Arthritis Rheum 42: 2532–2542PubMedCrossRefGoogle Scholar
  66. 66.
    Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS (1998) NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95: 13859–13864PubMedCrossRefGoogle Scholar
  67. 67.
    Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006) Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25: 6781–6799PubMedCrossRefGoogle Scholar
  68. 68.
    Maeda S, Chang L, Li ZW, Luo JL, Leffert H, Karin M (2003) IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα. Immunity 19: 725–737PubMedCrossRefGoogle Scholar
  69. 69.
    Luedde T, Assmus U, Wustefeld T, Meyerz, V, Roskams T, Schmidt-Supprian M, Rajewsky K, Brenner DA, Manns MP, Pasparakis M et al (2005) Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 115: 849–859PubMedGoogle Scholar
  70. 70.
    Sweeney SE, Firestein GS (2006) Mitogen activated protein kinase inhibitors: Where are we now and where are we going? Ann Rheum Dis 65(Suppl 3): iii83–iii88PubMedCrossRefGoogle Scholar
  71. 71.
    Chabaud-Riou M, Firestein GS (2004) Expression and activation of mitogen-activated protein kinase kinases-3 and-6 in rheumatoid arthritis. Am J Pathol 164: 177–184PubMedGoogle Scholar
  72. 72.
    Inoue T, Hammaker D, Boyle DL, Firestein GS (2005) Regulation of p38 MAPK by MAPK kinases 3 and 6 in fibroblast-like synoviocytes. J Immunol 174: 4301–4306PubMedGoogle Scholar
  73. 73.
    Badger AM, Griswold DE, Kapadia R, Blake S, Swift BA, Hoffman SJ, Stroup GB, Webb E, Rieman DJ, Gowen M et al (2000) Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 43: 175–183PubMedCrossRefGoogle Scholar
  74. 74.
    Fijen JW, Zijlstra JG, de Boer P, Spanjersberg R, Tervaert JW, Van Der Werf TS, Ligtenberg JJ, Tulleken JE (2001) Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers. Clin Exp Immunol 124: 16–20PubMedCrossRefGoogle Scholar
  75. 75.
    Westra J, Limburg PC, de Boer P, van Rijswijk MH (2004) Effects of RWJ 67657, a p38 mitogen activated protein kinase (MAPK) inhibitor, on the production of inflammatory mediators by rheumatoid synovial fibroblasts. Ann Rheum Dis 63: 1453–1459PubMedCrossRefGoogle Scholar
  76. 76.
    Genovese MC, S.B. Cohen SB, D. Wofsy D, Weinblatt ME, Firestein GS, Brahn. Strand V, Baker DG, Tong SE (2008) Randomized, double-blind, placebo-controlled Phase 2 study of an oral p38á MAPK inhibitor, SCIO-469, in patients with active rheumatoid arthritis. Arthritis Rheum 58: S431Google Scholar
  77. 77.
    Inoue T, Boyle DL, Corr M, Hammaker D, Davis RJ, Flavell RA, Firestein GS (2006) Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis. Proc Natl Acad Sci USA 103: 5484–5489PubMedCrossRefGoogle Scholar
  78. 78.
    Hegen M, Gaestel M, Nickerson-Nutter CL, Lin LL, Telliez JB (2006) MAPKAP kinase 2-deficient mice are resistant to collagen-induced arthritis. J Immunol 177: 1913–1917PubMedGoogle Scholar
  79. 79.
    Han Z, Boyle DL, Aupperle KR, Bennett B, Manning AM, Firestein GS (1999) Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther 291: 124–130PubMedGoogle Scholar
  80. 80.
    Sundarrajan M, Boyle DL, Chabaud-Riou M, Hammaker D, Firestein GS (2003) Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum 48: 2450–2460PubMedCrossRefGoogle Scholar
  81. 81.
    Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282: 2092–2095PubMedCrossRefGoogle Scholar
  82. 82.
    Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9: 1180–1186PubMedCrossRefGoogle Scholar
  83. 83.
    Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108: 73–81PubMedGoogle Scholar
  84. 84.
    Han Z, Chang L, Yamanishi Y, Karin M, Firestein GS (2002) Joint damage and inflammation in c-Jun N-terminal kinase 2 knockout mice with passive murine collageninduced arthritis. Arthritis Rheum 46: 818–823PubMedCrossRefGoogle Scholar
  85. 85.
    Koller M, Hayer S, Redlich K, Ricci R, David JP, Steiner G, Smolen JS, Wagner EF, Schett G (2005) JNK1 is not essential for TNF-mediated joint disease. Arthritis Res Ther 7: R166–R173PubMedCrossRefGoogle Scholar
  86. 86.
    Cha HS, Boyle DL, Inoue T, Schoot R, Tak PP, Pine P, Firestein GS. (2006) A novel spleen tyrosine kinase inhibitor blocks c-Jun N-terminal kinase-mediated gene expression in synoviocytes. J Pharmacol Exp Ther. 317: 571–8PubMedCrossRefGoogle Scholar
  87. 87.
    Weinblatt ME, Kavanaugh A, Grossbard E, for the TASKI-1 Trial (2008) Rheumatoid arthritis (RA) with a Syk kinase inhibitor: A 12 week randomized placebo controlled study. Arthritis Rheum 58: S610Google Scholar
  88. 88.
    Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubuleassociated proteins. Dev Cell 4: 521–533PubMedCrossRefGoogle Scholar
  89. 89.
    Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22: 667–676PubMedCrossRefGoogle Scholar
  90. 90.
    Inoue T, Hammaker D, Boyle DL, Firestein GS (2006) Regulation of JNK by MKK-7 in fibroblast-like synoviocytes. Arthritis Rheum 54: 2127–2135PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Jean-Marc Waldburger
    • 1
    • 2
  • Gary S. Firestein
    • 1
  1. 1.Department of MedicineUniversity of California, San DiegoLa JollaUSA
  2. 2.Centre médical universitaireUniversity of GenevaGenevaSwitzerland

Personalised recommendations