Advertisement

IL-17 and Th17 cells, key players in arthritis

  • Pierre Miossec
  • Ling Toh
  • Saloua Zrioual
Part of the Progress in Inflammation Research book series (PIR)

Abstract

IL-17 was identified in 1995/96 as a T cell-derived cytokine with effects on inflammation and neutrophil activation. Rheumatoid arthritis (RA) has emerged as the best-studied situation to justify the selection of IL-17 as a therapeutic target. By interacting with other proinflammatory cytokines, IL-17 was found to induce bone and cartilage destruction. In 2006, the precise cell source of IL-17 was identified in the mouse. These cells were named Th17, and a key role for these cells was demonstrated in various situations associated with inflammation. These new findings confirmed and extended the results previously obtained following the identification of IL-17 as a T cell-derived cytokine. At the same time, additional information was obtained on the other members of the IL-17 family and on the structure of the IL-17 receptor complex. Such knowledge has further extended the choice of possible modalities to control IL-17.

Keywords

Th17 Cell Rheumatoid Arthritis Synovium Collagen Arthritis Tumor Necrosis Factor Alpha Block Necrosis Factor Alpha Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miossec P (2003) Interleukin-17 in rheumatoid arthritis: If T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 48: 594–601PubMedCrossRefGoogle Scholar
  2. 2.
    Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183: 2593–603PubMedCrossRefGoogle Scholar
  3. 3.
    Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: A novel cytokine derived from T cells. J Immunol 155: 5483–6PubMedGoogle Scholar
  4. 4.
    Koenders MI, Joosten LA, van den Berg WB (2006) Potential new targets in arthritis therapy: Interleukin (IL)-17 and its relation to tumour necrosis factor and IL-1 in experimental arthritis. Ann Rheum Dis 65 (Suppl 3): iii29–iii33PubMedCrossRefGoogle Scholar
  5. 5.
    Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P (2001) IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 3: 168–77PubMedCrossRefGoogle Scholar
  6. 6.
    Lubberts E, Joosten LA, van de Loo FA, Schwarzenberger P, Kolls J, van den Berg WB (2002) Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm Res 51: 102–4PubMedCrossRefGoogle Scholar
  7. 7.
    Lubberts E, Joosten LA, Chabaud M, van Den Bersselaar L, Oppers B, Coenen-De Roo CJ, Richards CD, Miossec P, van Den Berg WB (2000) IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J Clin Invest 105: 1697–710PubMedCrossRefGoogle Scholar
  8. 8.
    Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P (1999) Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42: 963–70PubMedCrossRefGoogle Scholar
  9. 9.
    Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203: 2673–82PubMedCrossRefGoogle Scholar
  10. 10.
    Page G, Miossec P (2005) RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum 52: 2307–12PubMedCrossRefGoogle Scholar
  11. 11.
    Koenders MI, Lubberts E, van de Loo FA, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Kolls JK, Di Padova FE, Joosten LA, van den Berg WB (2006) Interleukin-17 acts independently of TNF-alpha under arthritic conditions. J Immunol 176: 6262–9PubMedGoogle Scholar
  12. 12.
    Chabaud M, Fossiez F, Taupin JL, Miossec P (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161: 409–14PubMedGoogle Scholar
  13. 13.
    Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 160: 3513–21PubMedGoogle Scholar
  14. 14.
    Harrington, LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: The Th17 lineage. Curr Opin Immunol 18: 349–56PubMedCrossRefGoogle Scholar
  15. 15.
    Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116: 1218–22PubMedCrossRefGoogle Scholar
  16. 16.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity 24: 677–88PubMedCrossRefGoogle Scholar
  17. 17.
    Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453: 1051–7PubMedCrossRefGoogle Scholar
  18. 18.
    Kawashima M, Miossec P (2004) Decreased response to IL-12 and IL-18 of peripheral blood cells in rheumatoid arthritis. Arthritis Res Ther 6: R39–R45PubMedCrossRefGoogle Scholar
  19. 19.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421: 744–8PubMedCrossRefGoogle Scholar
  20. 20.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–46PubMedCrossRefGoogle Scholar
  21. 21.
    Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L et al (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116: 1317–1326PubMedCrossRefGoogle Scholar
  22. 22.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126: 1121–33PubMedCrossRefGoogle Scholar
  23. 23.
    Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, Penninger JM, Eriksson U (2006) T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 203: 2009–19PubMedCrossRefGoogle Scholar
  24. 24.
    Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203: 1685–91PubMedCrossRefGoogle Scholar
  25. 25.
    Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan CC, Caspi RR (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category. J Exp Med 205: 799–810PubMedCrossRefGoogle Scholar
  26. 26.
    Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12-and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205: 1535–41PubMedCrossRefGoogle Scholar
  27. 27.
    Aarvak T, Chabaud M, Miossec P, Natvig JB (1999) IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol 162: 1246–51PubMedGoogle Scholar
  28. 28.
    Page G, Sattler A, Kersten S, Thiel A, Radbruch A, Miossec P (2004) Plasma cell-like morphology of Th1-cytokine-producing cells associated with the loss of CD3 expression. Am J Pathol 164: 409–17PubMedGoogle Scholar
  29. 29.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–4PubMedCrossRefGoogle Scholar
  30. 30.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–8PubMedCrossRefGoogle Scholar
  31. 31.
    Sarkar S, Tesmer LA, Hindnavis V, Endres JL, Fox DA (2006) Interleukin-17 as a molecular target in immune-mediated arthritis: Immunoregulatory properties of genetically modified murine dendritic cells that secrete interleukin-4. Arthritis Rheum 56: 89–100CrossRefGoogle Scholar
  32. 32.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204: 1849–61PubMedCrossRefGoogle Scholar
  33. 33.
    Yang L,,erson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454: 350–2PubMedCrossRefGoogle Scholar
  34. 34.
    Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, Miossec V, Miossec P (2008) IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol 180: 655–63PubMedGoogle Scholar
  35. 35.
    Starnes T, Broxmeyer HE, Robertson MJ, Hromas R (2002) Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J Immunol 169: 642–6PubMedGoogle Scholar
  36. 36.
    Owyang AM, Zaph C, Wilson EH, Guild KJ, McClanahan T, Miller HR, Cua DJ, Goldschmidt M, Hunter CA, Kastelein RA, Artis D (2006) Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med 203: 843–9PubMedCrossRefGoogle Scholar
  37. 37.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203: 2271–9PubMedCrossRefGoogle Scholar
  38. 38.
    Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445: 648–51PubMedCrossRefGoogle Scholar
  39. 39.
    Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3: 811–21PubMedCrossRefGoogle Scholar
  40. 40.
    Yao Z, Spriggs MK, Derry JM, Strockbine L, Park LS, VandenBos T, Zappone JD, Painter SL, Armitage RJ (1997) Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 9: 794–800PubMedCrossRefGoogle Scholar
  41. 41.
    Toy D, Kugler D, Wolfson M, Bos TV, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: Interleukin 17 signals through a heteromeric receptor complex. J Immunol 177: 36–9PubMedGoogle Scholar
  42. 42.
    Dong C (2008) IL-23/IL-17 biology and therapeutic considerations. J Immunotoxicol 5: 43–6PubMedCrossRefGoogle Scholar
  43. 43.
    Dubin PJ, Kolls JK (2007) IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 292: L519–28PubMedCrossRefGoogle Scholar
  44. 44.
    Chung DR, Kasper DL, Panzo RJ, Chtinis T, Grusby MJ, Sayegh MH, Tzianabos AO (2003) CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol 170: 1958–63PubMedGoogle Scholar
  45. 45.
    Chabaud M, Miossec P (2001) The combination of tumor necrosis factor alpha blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum 44: 1293–303PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Pierre Miossec
    • 1
  • Ling Toh
    • 1
  • Saloua Zrioual
    • 1
  1. 1.Department of Immunology and RheumatologyHôpital Edouard HerriotLyon Cedex 03France

Personalised recommendations