B cell targets in rheumatoid arthritis

  • Edward M. Vital
  • Shouvik Dass
  • Paul Emery
Part of the Progress in Inflammation Research book series (PIR)


B cells are critical to the pathogenesis of rheumatoid arthritis (RA). There is substantial evidence of the efficacy of depletion of B cells in many patients with RA using the first licensed agent, rituximab. Recent research has focused on enhancing efficacy using other targets to inhibit B cell function, including other B cell-depleting antibodies and cytokines critical to B cell function. The rationale for new B cell targets is discussed, as well as clinical data.


Rheumatoid Arthritis Lipid Raft Cell Depletion Tumor Necrosis Factor Family EULAR Response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoyer BF, Manz RA, Radbruch A, Hiepe F (2005) Long-lived plasma cells and their contribution to autoimmunity. Ann N Y Acad Sci 1050: 124–133PubMedCrossRefGoogle Scholar
  2. 2.
    Kaplan RA, Curd JG, Deheer DH, Carson DA, Pangburn MK, Muller-Eberhard HJ, Vaughan JH (1980) Metabolism of C4 and factor B in rheumatoid arthritis. Relation to rheumatoid factor. Arthritis Rheum 23: 911–920PubMedCrossRefGoogle Scholar
  3. 3.
    Ruddy S, Britton MC, Schur PH, Austen KF (1969) Complement components in synovial fluid: Activation and fixation in seropositive rheumatoid arthritis. Ann N Y Acad Sci 168: 161–172PubMedCrossRefGoogle Scholar
  4. 4.
    Bhatia A, Blades S, Cambridge G, Edwards JC (1998) Differential distribution of Fc gamma RIIIa in normal human tissues and co-localization with DAF and fibrillin-1: Implications for immunological microenvironments. Immunology 94: 56–63PubMedCrossRefGoogle Scholar
  5. 5.
    Abrahams VM, Cambridge G, Lydyard PM, Edwards JC (2000) Induction of tumor necrosis factor alpha production by adhered human monocytes: A key role for Fcgamma receptor type IIIa in rheumatoid arthritis. Arthritis Rheum 43: 608–616PubMedCrossRefGoogle Scholar
  6. 6.
    Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C et al (2002) Arthritis critically dependent on innate immune system players. Immunity 16: 157–168PubMedCrossRefGoogle Scholar
  7. 7.
    Neumann E, Barnum SR, Tarner IH, Echols J, Fleck M, Judex M, Kullmann F, Mountz JD, Scholmerich J, Gay S et al (2002) Local production of complement proteins in rheumatoid arthritis synovium. Arthritis Rheum 46: 934–945PubMedCrossRefGoogle Scholar
  8. 8.
    Fehr K, Velvart M, Rauber M, Knopfel M, Baici A, Salgam P, Boni A (1981) Production of agglutinators and rheumatoid factors in plasma cells of rheumatoid and nonrheumatoid synovial tissues. Arthritis Rheum 24: 510–519PubMedCrossRefGoogle Scholar
  9. 9.
    Van Snick JL, Van Roost E, Markowetz B, Cambiaso CL, Masson PL (1978) Enhancement by IgM rheumatoid factor of in vitro ingestion by macrophages and in vivo clearance of aggregated IgG or antigen-antibody complexes. Eur J Immunol 8: 279–285PubMedCrossRefGoogle Scholar
  10. 10.
    Devey ME, Hogben DN (1987) The effect of rheumatoid factor on the clearance of endogenous immune complexes formed in low-affinity mice during the induction of immune complex disease. Int Arch Allergy Appl Immunol 83: 206–209PubMedGoogle Scholar
  11. 11.
    Roosnek E, Lanzavecchia A (1991) Efficient and selective presentation of antigenantibody complexes by rheumatoid factor B cells. J Exp Med 173: 487–489PubMedCrossRefGoogle Scholar
  12. 12.
    Kyburz D, Corr M, Brinson DC, Von Damm A, Tighe H, Carson DA (1999) Human rheumatoid factor production is dependent on CD40 signaling and autoantigen. J Immunol 163: 3116–3122PubMedGoogle Scholar
  13. 13.
    Mannik M, Nardella FA, Sasso EH (1988) Rheumatoid factors in immune complexes of patients with rheumatoid arthritis. Springer Semin Immunopathol 10: 215–230PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards JC, Cambridge G (1998) Rheumatoid arthritis: The predictable effect of small immune complexes in which antibody is also antigen. Br J Rheumatol 37: 126–130PubMedCrossRefGoogle Scholar
  15. 15.
    Schroder AE, Greiner A, Seyfert C, Berek C (1996) Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 93: 221–225PubMedCrossRefGoogle Scholar
  16. 16.
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, Goronzy JJ, Weyand CM (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167: 1072–1080PubMedGoogle Scholar
  17. 17.
    Weyand CM, Goronzy JJ (2003) Ectopic germinal center formation in rheumatoid synovitis. Ann N Y Acad Sci 987: 140–149PubMedCrossRefGoogle Scholar
  18. 18.
    Thurlings RM, Wijbrandts CA, Mebius RE, Cantaert T, Dinant H, van der Pouw-Kraan TCTM, Baeten D, Tak PP (2008) Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum 58: 1582–1589PubMedCrossRefGoogle Scholar
  19. 19.
    Tak PP, Smeets TJM, Daha MR, Kluin PM, Meijers KAE, Brand R, Meinders AE, Breedveld FC (1997) Analysis of the synovial cellular infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum 40: 217–225PubMedCrossRefGoogle Scholar
  20. 20.
    Weyand CM, Seyler TM, Goronzy JJ (2005) B cells in rheumatoid synovitis. Arthritis Res Ther 7 Suppl 3: S9–12PubMedCrossRefGoogle Scholar
  21. 21.
    Voswinkel J, Weisgerber K, Pfreundschuh M, Gause A (2001) B lymphocyte involvement in ankylosing spondylitis: The heavy chain variable segment gene repertoire of B lymphocytes from germinal center-like foci in the synovial membrane indicates antigen selection. Arthritis Res 3: 189–195PubMedCrossRefGoogle Scholar
  22. 22.
    van Kuijk AW, Reinders-Blankert P, Smeets TJ, Dijkmans BA, Tak PP (2006) Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: Implications for therapy. Ann Rheum Dis 65: 1551–1557PubMedCrossRefGoogle Scholar
  23. 23.
    Kraan MC, Haringman JJ, Post WJ, Versendaal J, Breedveld FC, Tak PP (1999) Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology 38: 1074–1080PubMedCrossRefGoogle Scholar
  24. 24.
    Clausen BE, Bridges SL Jr, Lavelle JC, Fowler PG, Gay S, Koopman WJ, Schroeder HW Jr (1998) Clonally-related immunoglobulin VH domains and nonrandom use of DH gene segments in rheumatoid arthritis synovium. Mol Med 4: 240–257PubMedGoogle Scholar
  25. 25.
    Gause A, Gundlach K, Carbon G, Daus H, Trumper L, Pfreundschuh M (1997) Analysis of VH gene rearrangements from synovial B cells of patients with rheumatoid arthritis reveals infiltration of the synovial membrane by memory B cells. Rheumatol Int 17: 145–150PubMedCrossRefGoogle Scholar
  26. 26.
    Goronzy JJ, Zettl A, Weyand CM (1998) T cell receptor repertoire in rheumatoid arthritis. Int Rev Immunol 17: 339–363PubMedGoogle Scholar
  27. 27.
    Hauser AE, Debes GF, Arce S, Cassese G, Hamann A, Radbruch A, Manz RA (2002) Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J Immunol 169: 1277–1282PubMedGoogle Scholar
  28. 28.
    Tsubaki T, Takegawa S, Hanamoto H, Arita N, Kamogawa J, Yamamoto H, Takubo N, Nakata S, Yamada K, Yamamoto S et al (2005) Accumulation of plasma cells expressing CXCR3 in the synovial sublining regions of early rheumatoid arthritis in association with production of Mig/CXCL9 by synovial fibroblasts. Clin Exp Immunol 141: 363–371PubMedCrossRefGoogle Scholar
  29. 29.
    Kamogawa J TN, Arita N, Okada K, Yamamoto H, Yamamoto S, Nose M (2000) Histopathological characteristics of early rheumatoid arthritis: A case one month after clinical onset. Mod Rheumatol 10: 272–275CrossRefGoogle Scholar
  30. 30.
    Dass S BC, Vital EM, Reece RJ, Rawstron AC, Ponchel F, Emery P (2007) Reduction in synovial B cells after rituximab in RA predicts clinical response. Ann Rheum Dis 66: 90Google Scholar
  31. 31.
    Vos K, Thurlings RM, Wijbrandts CA, van Schaardenburg D, Gerlag DM, Tak PP (2007) Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. Arthritis Rheum 56: 772–778PubMedCrossRefGoogle Scholar
  32. 32.
    Kavanaugh A, Rosengren S, Lee SJ, Hammaker D, Firestein GS, Kalunian K, Wei N, Boyle DL (2008) Assessment of rituximab’s immunomodulatory synovial effects (the ARISE trial). I: Clinical and synovial biomarker results. Ann Rheum Dis 67: 402–408PubMedCrossRefGoogle Scholar
  33. 33.
    Dechanet J, Merville P, Durand I, Banchereau J, Miossec P (1995) The ability of synoviocytes to support terminal differentiation of activated B cells may explain plasma cell accumulation in rheumatoid synovium. J Clin Invest 95: 456–463PubMedCrossRefGoogle Scholar
  34. 34.
    Tan SM, Xu D, Roschke V, Perry JW, Arkfeld DG, Ehresmann GR, Migone TS, Hilbert DM, Stohl W (2003) Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum 48: 982–992PubMedCrossRefGoogle Scholar
  35. 35.
    Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L, Lin WY, Hu Z, Lu Y, Chen Y et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174: 817–826PubMedGoogle Scholar
  36. 36.
    Thurlings RM, Vos K, Wijbrandts CA, Zwinderman A, Gerlag DM, Tak PP (2008) Synovial tissue response to rituximab: Mechanism of action and identification of biomarkers of response. Ann Rheum Dis 67: 917–925PubMedCrossRefGoogle Scholar
  37. 37.
    Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA, Bowen K, Steeber DA, Haas KM, Poe JC et al (2004) Mouse CD20 expression and function. Int Immunol 16: 119–129PubMedCrossRefGoogle Scholar
  38. 38.
    O’Keefe TL, Williams GT, Davies SL, Neuberger MS (1998) Mice carrying a CD20 gene disruption. Immunogenetics 48: 125–132PubMedCrossRefGoogle Scholar
  39. 39.
    Tedder TF, Klejman G, Disteche CM, Adler DA, Schlossman SF, Saito H (1988) Cloning of a complementary DNA encoding a new mouse B lymphocyte differentiation antigen, homologous to the human B1 (CD20) antigen, and localization of the gene to chromosome 19. J Immunol 141: 4388–4394PubMedGoogle Scholar
  40. 40.
    Tedder TF, Streuli M, Schlossman SF, Saito H (1988) Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci USA 85: 208–212PubMedCrossRefGoogle Scholar
  41. 41.
    Stamenkovic I, Seed B (1988) Analysis of two cDNA clones encoding the B lymphocyte antigen CD20 (B1, Bp35), a type III integral membrane protein. J Exp Med 167: 1975–1980PubMedCrossRefGoogle Scholar
  42. 42.
    Einfeld DA, Brown JP, Valentine MA, Clark EA, Ledbetter JA (1988) Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J 7: 711–717PubMedGoogle Scholar
  43. 43.
    Liang Y, Buckley TR, Tu L, Langdon SD, Tedder TF (2001) Structural organization of the human MS4A gene cluster on Chromosome 11q12. Immunogenetics 53: 357–368PubMedCrossRefGoogle Scholar
  44. 44.
    Liang Y, Tedder TF (2001) Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: Sixteen new MS4A family members expressed in human and mouse. Genomics 72: 119–127PubMedCrossRefGoogle Scholar
  45. 45.
    Polyak MJ, Tailor SH, Deans JP (1998) Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol 161: 3242–3248PubMedGoogle Scholar
  46. 46.
    Cragg MS, Walshe CA, Ivanov AO, Glennie MJ (2005) The biology of CD20 and its potential as a target for mAb therapy. Current Direct Autoimmun 8: 140–174CrossRefGoogle Scholar
  47. 47.
    Tedder TF, Engel P (1994) CD20: A regulator of cell-cycle progression of B lymphocytes. Immunol Today 15: 450–454PubMedCrossRefGoogle Scholar
  48. 48.
    Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121: 1121–1132PubMedCrossRefGoogle Scholar
  49. 49.
    Polyak MJ, Deans JP (2002) Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood 99: 3256–3262PubMedCrossRefGoogle Scholar
  50. 50.
    Leveille C, R AL-D, Mourad W (1999) CD20 is physically and functionally coupled to MHC class II and CD40 on human B cell lines. Eur J Immunol 29: 65–74PubMedCrossRefGoogle Scholar
  51. 51.
    Szollosi J, Horejsi V, Bene L, Angelisova P, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157: 2939–2946PubMedGoogle Scholar
  52. 52.
    Petrie RJ, Deans JP (2002) Colocalization of the B cell receptor and CD20 followed by activation-dependent dissociation in distinct lipid rafts. J Immunol 169: 2886–2891PubMedGoogle Scholar
  53. 53.
    Li H, Ayer LM, Polyak MJ, Mutch CM, Petrie RJ, Gauthier L, Shariat N, Hendzel MJ, Shaw AR, Patel KD et al (2004) The CD20 calcium channel is localized to microvilli and constitutively associated with membrane rafts: Antibody binding increases the affinity of the association through an epitope-dependent cross-linking-independent mechanism. J Biol Chem 279: 19893–19901PubMedCrossRefGoogle Scholar
  54. 54.
    Holder M, Grafton G, MacDonald I, Finney M, Gordon J (1995) Engagement of CD20 suppresses apoptosis in germinal center B cells. Eur J Immunol 25: 3160–3164PubMedCrossRefGoogle Scholar
  55. 55.
    Smeland EB, Beiske K, Ek B, Watt R, Pfeifer-Ohlsson S, Blomhoff HK, Godal T, Ohlsson R (1987) Regulation of c-myc transcription and protein expression during activation of normal human B cells. Exp Cell Res 172: 101–109PubMedCrossRefGoogle Scholar
  56. 56.
    Clark EA, Shu G (1987) Activation of human B cell proliferation through surface Bp35 (CD20) polypeptides or immunoglobulin receptors. J Immunol 138: 720–725PubMedGoogle Scholar
  57. 57.
    Tedder TF, Forsgren A, Boyd AW, Nadler LM, Schlossman SF (1986) Antibodies reactive with the B1 molecule inhibit cell cycle progression but not activation of human B lymphocytes. Eur J Immunol 16: 881–887PubMedCrossRefGoogle Scholar
  58. 58.
    Shan D, Ledbetter JA, Press OW (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother 48: 673–683PubMedCrossRefGoogle Scholar
  59. 59.
    Hofmeister JK, Cooney D, Coggeshall KM (2000) Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis 26: 133–143PubMedCrossRefGoogle Scholar
  60. 60.
    Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J (2002) The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 99: 1314–1319PubMedCrossRefGoogle Scholar
  61. 61.
    Cardarelli PM, Quinn M, Buckman D, Fang Y, Colcher D, King DJ, Bebbington C, Yarranton G (2002) Binding to CD20 by anti-B1 antibody or F(ab’)(2) is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother 51: 15–24PubMedCrossRefGoogle Scholar
  62. 62.
    Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, French RR, Glennie MJ (2003) Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101: 1045–1052PubMedCrossRefGoogle Scholar
  63. 63.
    Li H, Ayer LM, Lytton J, Deans JP (2003) Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 278: 42427–42434PubMedCrossRefGoogle Scholar
  64. 64.
    Cragg MS AA, O’Brien L, Tutt A, Chan HTC, Anderson VA, Glennie MJ (2002) Opposing properties of CD20 mAb. In: Leukocyte typing VII. Oxford University Press, Oxford, 95–97Google Scholar
  65. 65.
    Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103: 2738–2743PubMedCrossRefGoogle Scholar
  66. 66.
    Chan HT, Hughes D, French RR, Tutt AL, Walshe CA, Teeling JL, Glennie MJ, Cragg MS (2003) CD20-induced lymphoma cell death is independent of both caspases and its redistribution into Triton X-100 insoluble membrane rafts. Cancer Res 63: 5480–5489PubMedGoogle Scholar
  67. 67.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6: 443–446PubMedCrossRefGoogle Scholar
  68. 68.
    Cartron G, Watier H, Golay J, Solal-Celigny P (2004) From the bench to the bedside: Ways to improve rituximab efficacy. Blood 104: 2635–2642PubMedCrossRefGoogle Scholar
  69. 69.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99: 754–758PubMedCrossRefGoogle Scholar
  70. 70.
    Hatjiharissi E, Xu L, Santos DD, Hunter ZR, Ciccarelli BT, Verselis S, Modica M, Cao Y, Manning RJ, Leleu X et al (2007) Increased natural killer cell expression of CD16, and augmented binding and ADCC activity to rituximab among individuals expressing the FcgammaRIIIA-158 V/V and V/F polymorphism. Blood 110: 2561–2564PubMedCrossRefGoogle Scholar
  71. 71.
    Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J, Looney RJ (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48: 455–459PubMedCrossRefGoogle Scholar
  72. 72.
    van der Kolk LE, Grillo-Lopez AJ, Baars JW, Hack CE, van Oers MH (2001) Complement activation plays a key role in the side-effects of rituximab treatment. Br J Haematol 115: 807–811PubMedCrossRefGoogle Scholar
  73. 73.
    Manches O, Lui G, Chaperot L, Gressin R, Molens JP, Jacob MC, Sotto JJ, Leroux D, Bensa JC, Plumas J (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101: 949–954PubMedCrossRefGoogle Scholar
  74. 74.
    Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, Botto M, Introna M, Golay J (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171: 1581–1587PubMedGoogle Scholar
  75. 75.
    Press OW, Howell-Clark J, Anderson S, Bernstein I (1994) Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood 83: 1390–1397PubMedGoogle Scholar
  76. 76.
    Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ (1989) Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 49: 4906–4912PubMedGoogle Scholar
  77. 77.
    Vervoordeldonk SF, Merle PA, van Leeuwen EF, von dem Borne AE, Slaper-Cortenbach IC (1994) Preclinical studies with radiolabeled monoclonal antibodies for treatment of patients with B-cell malignancies. Cancer 73: 1006–1011PubMedCrossRefGoogle Scholar
  78. 78.
    Pickartz T, Ringel F, Wedde M, Renz H, Klein A, von Neuhoff N, Dreger P, Kreuzer KA, Schmidt CA, Srock S et al (2001) Selection of B-cell chronic lymphocytic leukemia cell variants by therapy with anti-CD20 monoclonal antibody rituximab. Exp Hematol 29: 1410–1416PubMedCrossRefGoogle Scholar
  79. 79.
    Xia MQ, Hale G, Waldmann H (1993) Efficient complement-mediated lysis of cells containing the CAMPATH-1 (CDw52) antigen. Mol Immunol 30: 1089–1096PubMedCrossRefGoogle Scholar
  80. 80.
    Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, Reed JC (2002) The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: Evidence of caspase activation and apoptosis induction. Blood 99: 1038–1043PubMedCrossRefGoogle Scholar
  81. 81.
    Rowan W, Tite J, Topley P, Brett SJ (1998) Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B-and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 95: 427–436PubMedCrossRefGoogle Scholar
  82. 82.
    Giles FJ, Vose JM, Do KA, Johnson MM, Manshouri T, Bociek G, Bierman PJ, O’Brien SM, Keating MJ, Kantarjian HM et al (2003) Circulating CD20 and CD52 in patients with non-Hodgkin’s lymphoma or Hodgkin’s disease. Br J Haematol 123: 850–857PubMedCrossRefGoogle Scholar
  83. 83.
    Manshouri T, Do KA, Wang X, Giles FJ, O’Brien SM, Saffer H, Thomas D, Jilani I, Kantarjian HM, Keating MJ et al (2003) Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood 101: 2507–2513PubMedCrossRefGoogle Scholar
  84. 84.
    Cartron G, Blasco H, Paintaud G, Watier H, Le Guellec C (2007) Pharmacokinetics of rituximab and its clinical use: Thought for the best use? Crit Rev Oncol Hematol 62: 43–52PubMedCrossRefGoogle Scholar
  85. 85.
    Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M, Green D, Rosenberg J, McLaughlin P, Shen D (1998) Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent lowgrade or follicular non-Hodgkin’s lymphoma. Ann Oncol 9: 995–1001PubMedCrossRefGoogle Scholar
  86. 86.
    Igarashi T, Kobayashi Y, Ogura M, Kinoshita T, Ohtsu T, Sasaki Y, Morishima Y, Murate T, Kasai M, Uike N et al (2002) Factors affecting toxicity, response and progression-free survival in relapsed patients with indolent B-cell lymphoma and mantle cell lymphoma treated with rituximab: A Japanese phase II study. Ann Oncol 13: 928–943PubMedCrossRefGoogle Scholar
  87. 87.
    Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D et al (1999) BLyS: Member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285: 260–263PubMedCrossRefGoogle Scholar
  88. 88.
    Mukhopadhyay A, Ni J, Zhai Y, Yu GL, Aggarwal BB (1999) Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J Biol Chem 274: 15978–15981PubMedCrossRefGoogle Scholar
  89. 89.
    Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189: 1747–1756PubMedCrossRefGoogle Scholar
  90. 90.
    Shu HB, Hu WH, Johnson H (1999) TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol 65: 680–683PubMedGoogle Scholar
  91. 91.
    Hahne M, Kataoka T, Schroter M, Hofmann K, Irmler M, Bodmer JL, Schneider P, Bornand T, Holler N, French LE et al (1998) APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 188: 1185–1190PubMedCrossRefGoogle Scholar
  92. 92.
    Liu Y, Hong X, Kappler J, Jiang L, Zhang R, Xu L, Pan CH, Martin WE, Murphy RC, Shu HB et al (2003) Ligand-receptor binding revealed by the TNF family member TALL-1. Nature 423: 49–56PubMedCrossRefGoogle Scholar
  93. 93.
    Liu Y, Xu L, Opalka N, Kappler J, Shu HB, Zhang G (2002) Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell 108: 383–394PubMedCrossRefGoogle Scholar
  94. 94.
    Zhukovsky EA, Lee JO, Villegas M, Chan C, Chu S, Mroske C (2004) TNF ligands: Is TALL-1 a trimer or a virus-like cluster? Nature 427: 413–414; discussion 414PubMedCrossRefGoogle Scholar
  95. 95.
    Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS, Sosnovtseva S, Carrell JA, Feng P, Giri JG et al (2001) Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97: 198–204PubMedCrossRefGoogle Scholar
  96. 96.
    Scapini P, Nardelli B, Nadali G, Calzetti F, Pizzolo G, Montecucco C, Cassatella MA (2003) G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 197: 297–302PubMedCrossRefGoogle Scholar
  97. 97.
    He B, Raab-Traub N, Casali P, Cerutti A (2003) EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol 171: 5215–5224PubMedGoogle Scholar
  98. 98.
    Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L, Ford RJ (2006) Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 107: 4540–4548PubMedCrossRefGoogle Scholar
  99. 99.
    Ohata J, Zvaifler NJ, Nishio M, Boyle DL, Kalled SL, Carson DA, Kipps TJ (2005) Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol 174: 864–870PubMedGoogle Scholar
  100. 100.
    Rolink AG, Tschopp J, Schneider P, Melchers F (2002) BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 32: 2004–2010PubMedCrossRefGoogle Scholar
  101. 101.
    Do RK, Hatada E, Lee H, Tourigny MR, Hilbert D, Chen-Kiang S (2000) Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med 192: 953–964PubMedCrossRefGoogle Scholar
  102. 102.
    Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, Solovyev I, Hawkins N, Kelley M, Chang D, Van G et al (2000) Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci USA 97: 3370–3375PubMedCrossRefGoogle Scholar
  103. 103.
    Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190: 1697–1710PubMedCrossRefGoogle Scholar
  104. 104.
    Mackay F, Browning JL (2002) BAFF: A fundamental survival factor for B cells. Nat Rev 2: 465–475CrossRefGoogle Scholar
  105. 105.
    Tangye SG, Bryant VL, Cuss AK, Good KL (2006) BAFF, APRIL and human B cell disorders. Semin Immunol 18: 305–317PubMedCrossRefGoogle Scholar
  106. 106.
    Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3: 822–829PubMedCrossRefGoogle Scholar
  107. 107.
    Craxton A, Magaletti D, Ryan EJ, Clark EA (2003) Macrophage-and dendritic celldependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 101: 4464–4471PubMedCrossRefGoogle Scholar
  108. 108.
    Stein JV, Lopez-Fraga M, Elustondo FA, Carvalho-Pinto CE, Rodriguez D, Gomez-Caro R, De Jong J, Martinez AC, Medema JP, Hahne M (2002) APRIL modulates B and T cell immunity. J Clin Invest 109: 1587–1598PubMedGoogle Scholar
  109. 109.
    Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, Stohl W, Baker KP, Ullrich S, Nardelli B et al (2002) BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol 169: 4314–4321PubMedGoogle Scholar
  110. 110.
    Avery DT, Kalled SL, Ellyard JI, Ambrose C, Bixler SA, Thien M, Brink R, Mackay F, Hodgkin PD, Tangye SG (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112: 286–297PubMedGoogle Scholar
  111. 111.
    Zhang X, Park CS, Yoon SO, Li L, Hsu YM, Ambrose C, Choi YS (2005) BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol 17: 779–788PubMedCrossRefGoogle Scholar
  112. 112.
    Cheema GS, Roschke V, Hilbert DM, Stohl W (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44: 1313–1319PubMedCrossRefGoogle Scholar
  113. 113.
    Seyler TM, Park YW, Takemura S, Bram RJ, Kurtin PJ, Goronzy JJ, Weyand CM (2005) BLyS and APRIL in rheumatoid arthritis. J Clin Invest 115: 3083–3092PubMedCrossRefGoogle Scholar
  114. 114.
    Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, Keystone EC, Loveless JE, Burmester GR, Cravets MW et al (2006) Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 54: 2793–2806PubMedCrossRefGoogle Scholar
  115. 115.
    Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350: 2572–2581PubMedCrossRefGoogle Scholar
  116. 116.
    Emery P, Fleischmann R, Filipowicz-Sosnowska A, Schechtman J, Szczepanski L, Kavanaugh A, Racewicz AJ, van Vollenhoven RF, Li NF, Agarwal S et al (2006) The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: Results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 54: 1390–1400PubMedCrossRefGoogle Scholar
  117. 117.
    Emery P BF, Martin-Mola, Pavelka L et al (2007) Relationship between peripheral B cell levels and loss of EULAR response in rheumatoid arthritis patients treated with rituximab. Ann Rheum Dis 66: 124Google Scholar
  118. 118.
    Dass S VE, Bingham SJ, Emery P (2006) The safety and efficacy of rituximab in patients with rheumatoid arthritis outside clinical trials: Real life experience. Rheumatology 45: i47Google Scholar
  119. 119.
    van Vollenhoven RF, Emery P, Bingham C, Keystone E, Greenwald M, Moreland LW, Kim D, Cooper S, Wagner B, Ward P (2006) Safety of rituximab in rheumatoid arthritis: Results of a pooled analysis. Ann Rheum Dis 65: 332Google Scholar
  120. 120.
    Tak PP CS, Emery P (2006) Baseline autoantibody status (RF, Anti-CCP) and clinical response following the first treatment course with rituximab. Arthritis Rheum 54: S368Google Scholar
  121. 121.
    Dass S RA, Vital EM, Jain S, Bingham SJ, McGonagle D, Emery P (2006) Highly sensitive B cell analysis predicts response to rituximab therapy in RA. Arthritis Rheum 54: S832CrossRefGoogle Scholar
  122. 122.
    Emery P BF, Martin-Mola E, Pavelka K, Szczepanska L, Hagerty D, Margrini F, Behrendt C, Kelman A (2007) Relationship between peripheral B cell levels and loss of EULAR response in rheumatoid arthritis patients treated with rituximab. Ann Rheum Dis 66: 124Google Scholar
  123. 123.
    Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC (2006) Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 54: 613–620PubMedCrossRefGoogle Scholar
  124. 124.
    Emery P FD, Ferracioli G, Udell J, van Vollenhoven RF, Rowe K, Agarwal S, Shaw T (2006) Long-term efficacy and safety of a repeat course of rituximab in RA patients with an inadequate response to disease modifying anti-rheumatic drugs. Arthritis Rheum 54: S228CrossRefGoogle Scholar
  125. 125.
    Keystone EC FR, Emery P, Chubrick A, Dougados M, Baldassare AR, Bathon JM, Hessey E, Totoritis M, Cooper S (2006) Long-term efficacy and safety of a repeat treatment course of rituximab in rheumatoid arthritis patients with an inadequate response to one or more TNF inhibitors. Arthritis Rheum 54Google Scholar
  126. 126.
    Van Vollenhoven RF CS, Pavelka K, Kavanaugh A, Tak PP, Greenwald M, Cravets M, Ward P, Agarwal S, Magrini F (2006) Response to rituximab in patients with rheumatoid arthritis is maintained by repeat therapy: Results of an open-label trial. Ann Rheum Dis 65: 510Google Scholar
  127. 127.
    Emery P ST, Lehane PB et al (2004) Efficacy and safety of Rituximab at 2 years following a single treatment in patients with active rheumatoid arthritis. Arthritis Rheum 50: S659Google Scholar
  128. 128.
    Strand V B-GA, Pvelka K et al (2005) Two year improvements in physical function reflect sustained benefit in rheumatoid arthritis patients previously treated with rituximab. Ann Rheum Dis 64Google Scholar
  129. 129.
    Vugmeyster Y, Beyer J, Howell K, Combs D, Fielder P, Yang J, Qureshi F, Sandlund B, Kawaguchi L, Dummer W et al (2005) Depletion of B cells by a humanized anti-CD20 antibody PRO70769 in Macaca fascicularis. J Immunother 28: 212–219PubMedCrossRefGoogle Scholar
  130. 130.
    Genovese MC KJ, Kohen MD, Lowenstein MB, Del Giudice J, Baldassare AR, Schechtman J, Gujrathi S, Trapp RG, Sweiss NJ, Spaniolo DG, Dummer W (2006) Safety and clinical activity of ocrelizumab (a humanised antibody targeting CD20+ B cells) in combination with methotrexate in moderate-severe rheumatoid arthritis patients (Ph I/ II ACTION study). Arthritis Rheum 54: S66Google Scholar
  131. 131.
    Ostergaard M WC, Dawes PT, Rigby W, Petersen J, Kastberg H, Sierakowski S (2006) First clinical results of Humax-CD20 fully human monoclonal IgG1 antibody treatment in rheumatoid arthritis. Presented at the Annual European Congress of Rheumatology, abstract P0018Google Scholar
  132. 132.
    McKay J C-SH, Boling E, Valente R, Limanni A, Racewicz A, Wierbinska-Zarowny D, Fernandez V, Zhong J, Zilberstein M, Freimuth W (2005) Belimumab, a fully human monoclonal antibody to B-Lymphocyte stimulator, combined with standard of care therapy reduces the signs and symptoms of rheumatoid arthritis in a heterogeneous subject population. Arthritis Rheum 52: S710CrossRefGoogle Scholar
  133. 133.
    Stohl W CW, Weisman M, Furie R, Weinstein A, Mishra N, Chevrier M, Fernandez V, Migone TS, Freimuth W (2005) Belimumab, a novel fully human monoclonal antibody to B-Lymphocyte Stimulator, selectively modulates B cell subpopulations and immunoglobulins in a heterogeneous rheumatoid arthritis population. Arthritis Rheum 52: S444CrossRefGoogle Scholar
  134. 134.
    Peano S PR, Bertolino M, Vigna E, Yu P, Visich J (2005) Nonclinical safety, pharmacokinetics and pharmacodynamics of TACI-Ig, a soluble receptor fusion protein antagonist of BLyS and APRIL. Arthritis Rheum 52: S285Google Scholar
  135. 135.
    Tak PP, Thurlings RM, Rossier C, Nestorov I, Dimic A, Mircetic V, Rischmueller M, Nasonov E, Shmidt E, Emery P, Munafo A (2008) Atacicept in patients with rheumatoid arthritis: Results of a multicenter, Phase Ib, double-blind, placebo-controlled, doseescalating, single-and repeated-dose study. Arthritis Rheum 58: 61–72PubMedCrossRefGoogle Scholar
  136. 136.
    Vugmeyster Y, Seshasayee D, Chang W, Storn A, Howell K, Sa S, Nelson T, Martin F, Grewal I, Gilkerson E et al (2006) A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 168: 476–489PubMedCrossRefGoogle Scholar
  137. 137.
    Fleischmann R WN, Shaw M, Birbara C, Anand B, Gujrathi S, Hendricks R, Rao T, Ren S, Weingart M, Wagner B, McLean L (2006) BR3-Fc phase I study: Safety, pharmacokinetics and pharmacodynamic effects of a novel BR3-Fc fusion protein in patients with rheumatoid arthritis. Arthritis Rheum 54: S229Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Edward M. Vital
    • 1
  • Shouvik Dass
    • 1
  • Paul Emery
    • 1
  1. 1.Section of Musculoskeletal Disease, Leeds Institute of Molecular MedicineUniversity of Leeds, Chapel Allerton HospitalLeedsUK

Personalised recommendations