Lyapunov Exponents at Anomalies of SL(2, ℝ)-actions

  • Hermann Schulz-Baldes
Part of the Operator Theory: Advances and Applications book series (OT, volume 174)


Anomalies are known to appear in the perturbation theory for the one-dimensional Anderson model. A systematic approach to anomalies at critical points of products of random matrices is developed, classifying and analysing their possible types. The associated invariant measure is calculated formally. For an anomaly of so-called second degree, it is given by the ground-state of a certain Fokker-Planck equation on the unit circle. The Lyapunov exponent is calculated to lowest order in perturbation theory with rigorous control of the error terms.


Lyapunov Exponent Invariant Measure Anderson Model Random Dynamical System Dirac Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, (Birkhäuser, Boston, 1985).MATHGoogle Scholar
  2. [2]
    A. Bovier, A. Klein, Weak disorder expansion of the invariant measure for the one-dimensional Anderson model, J. Stat. Phys. 51, 501–517 (1988).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Campanino, A. Klein, Anomalies in the one-dimensional Anderson model at weak disorder, Commun. Math. Phys. 130, 441–456 (1990).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    B. Derrida, E.J. Gardner, Lyapunov exponent of the one dimensional Anderson model: weak disorder expansion, J. Physique 45, 1283 (1984).MathSciNetGoogle Scholar
  5. [5]
    S. Jitomirskaya, H. Schulz-Baldes, G. Stolz, Delocalization in random polymer chains, Commun. Math. Phys. 233, 27–48 (2003).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Kappus, F. Wegner, Anomaly in the band centre of the one-dimensional Anderson model, Z. Phys. B 45, 15–21 (1981).CrossRefGoogle Scholar
  7. [7]
    H. Risken, The Fokker-Planck equation, Second Edition, (Springer, Berlin, 1988).Google Scholar
  8. [8]
    R. Schrader, H. Schulz-Baldes, A. Sedrakyan, Perturbative test of single parameter scaling for 1D random media, Ann. H. Poincaré 5, 1159–1180 (2004).MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Shubin, R. Vakilian, T. Wolff, Some harmonic analysis questions suggested by Anderson-Bernoulli models, Geom. Funct. Anal. 8, 932–964 (1998).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Hermann Schulz-Baldes
    • 1
  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations