Applications of Heisenberg Geometry

Part of the Progress in Mathematics book series (PM, volume 259)


A very intuitive way to think of the sub-Riemannian Heisenberg group is as a medium in which motion is only possible along a given set of directions, changing from point to point. If the constraints are too tight, then it may be impossible to join any two points with an admissible trajectory, hence one needs to find conditions on the constraints implying “horizontal accessibility”.


Path Planning Heisenberg Group Pseudoconvex Domain Carnot Group Jacobi Elliptic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag AG 2007

Personalised recommendations