Skip to main content

Systematic Procedural and Sensitivity Analysis of the Pattern Informatics Method for Forecasting Large (M > 5) Earthquake Events in Southern California

  • Conference paper
  • First Online:
Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part II

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 425 Accesses

Abstract

Recent studies in the literature have introduced a new approach to earthquake forecasting based on representing the space-time patterns of localized seismicity by a time-dependent system state vector in a real-valued Hilbert space and deducing information about future space-time fluctuations from the phase angle of the state vector. While the success rate of this Pattern Informatics (PI) method has been encouraging, the method is still in its infancy. Procedural analysis, statistical testing, parameter sensitivity investigation and optimization all still need to be performed. In this paper, we attempt to optimize the PI approach by developing quantitative values for “predictive goodness” and analyzing possible variations in the proposed procedure. In addition, we attempt to quantify the systematic dependence on the quality of the input catalog of historic data and develop methods for combining catalogs from regions of different seismic rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubrey, D.G. and Emery, K.O. (1983), Eigenanalysis of recent United States sea levels, Continental Shelf Res. 2, 21–33.

    Article  Google Scholar 

  • Bak, P. and Tang, C. (1989), Earthquakes as self-organized critical phenomena, J. Geophys. Res. 94, 15,635–15,637.

    Google Scholar 

  • Bevington, P.R. and Robinson, D.K. (1992), Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill.

    Google Scholar 

  • Bowman, D.D., Ouillon, G. Sammis, C.G., Sornette, A., and Sornette, D. (1998), An observational test of the critical earthquake concept. J. Geophys. Res. 103, 24,359–24,372.

    Article  Google Scholar 

  • Brehm, D.J. and Braile, L.W. (1999), Intermediate-term earthquake prediction using the modified time-to-failure method in Southern California, BSSA 89, 275–293.

    Google Scholar 

  • Bufe, C.G. and Varnes, D.J. (1993), Predictive modeling of the seismic cycle of the greater San Francisco bay region, J. Geophys. Res. 98, 9871–9883.

    Google Scholar 

  • Fukunaga, K., Introduction to Statistical Pattern Recognition, (Academic Press, New York (1970)).

    Google Scholar 

  • Garcia, A. and Penland, C. (1991), Fluctuating hydrodynamics and principal oscillation pattern analysis, J. Stat. Phys. 64, 1121–1132.

    Article  Google Scholar 

  • Gross, S. and Rundle, J. B. (1998), A systematic test of time-to-failure analysis, Geophys. J. Int. 133, 57–64.

    Article  Google Scholar 

  • Holmes, P. Lumley, J.L., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, (Cambridge University Press, Cambridge, U.K. 1996).

    Google Scholar 

  • Hotelling, H. (1993), Analysis of a complex of statistical variables into principal components, J. Educ. Psych. 24, 417–520.

    Article  Google Scholar 

  • Jaumé, S.C. and Sykes, L.R. (1999), Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure Appl. Geophys. 155, 279–306.

    Article  Google Scholar 

  • Joliffee, I.T. and Stephenson, D.B., Forecast Verification (John Wiley. (2003)).

    Google Scholar 

  • Kagan, Y.Y. and Jackson, D.D. (2000), Probabilistic forecasting of earthquakes, Geophys. J. Int. 143, 438–453.

    Article  Google Scholar 

  • Kanamori, H., The nature of seismicity patterns before large earthquakes. In Earthquake Prediction: An International Review, Geophys. Monogr. Ser., pp. 1–19, AGU (Washington, D. C. (1981)).

    Google Scholar 

  • Moghaddam, B., Wahid, W., and Pentland, A. (1998) Beyond eigenfaces: Probabilistic matching for face recognition. In Third IEEE Intl. Conf. on Automatic Face and Gesture Recognition, pp. 1–6.

    Google Scholar 

  • Mori, H. and Kuramoto, Y., Dissipative Structures and Chaos, (Springer-Verlag, Berlin. (1998)).

    Google Scholar 

  • North, G.R. (1984), Empirical orthogonal functions and normal modes, J. Atm. Sci. 41 (5), 879–887.

    Article  Google Scholar 

  • Penland, C. (1989), Random forcing and forecasting using principal oscillation pattern analysis, Monthly Weather Rev. 117, 2165–2185.

    Article  Google Scholar 

  • Penland, C. and Magorian, T. (1993), Prediction of Niño 3 sea-surface temperatures using linear inverse modeling. J. Climate 6, 1067–1076.

    Article  Google Scholar 

  • Penland, C. and Sardeshmukh, P.D. (1995), The optimal growth of tropical sea surface temperature anomalies, J. Climate 8, 1999–2024.

    Article  Google Scholar 

  • Preisendorfer, R.W., Principle Component Analysis in Meteorology and Oceanography (Elsevier, Amsterdam. (1988)).

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in C (Cambridge University Press, Cambridge, MA. (2002)).

    Google Scholar 

  • Rundle, J.B. and Klein, W. (1995), New ideas about the physics of earthquakes, Rev. Geophys. Space Phys. Suppl. (July) 283, 283–286.

    Google Scholar 

  • Rundle, J.B., Klein, W., Gross, S.J., and Tiampo, K.F., Dynamics of seismicity patterns in systems of earthquake faults. In Geocomplexity and the Physics of Earthquakes. Geophys. Monogr. Ser., vol. 120 (eds. by J.B. Rundle, D.L. Turcotte, and W. Klein), pp. 127–146 (AGU, Washington, D. C. 2000a).

    Google Scholar 

  • Rundle, J.B., Klein, W., Tiampo, K.F., and Gross, S.J. (2000b), Linear pattern dynamics in nonlinear threshold systems, Phys. Rev. E. 61, 2418–2432.

    Article  Google Scholar 

  • Rundle, J.B., Tiampo, K.F., Klein, W., and Martins, J.S.S. (2002), Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting. Proc. Natl. Acad. Sci. U. S. A. 99, 2514–2521: Suppl. 1.

    Article  Google Scholar 

  • Rundle, J.B., Turcotte, D.L., Shcherbakov, R., Klein, R., and Sammis, C. (2003), Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 41(4), 1019, doi:10.1029/2003RG000135.

    Article  Google Scholar 

  • Savage, J.C. (1988), Principal component analysis of geodetically measured deformation in long valley caldera, eastern California. 1983–1987, J. Geophys. Res. 93, 13,297–13,305.

    Article  Google Scholar 

  • Schorlemmer, D., Jackson, D.D., and Gerstenberger, M. (2003), Earthquake likelihood model testing. http://moho.ess.ucla.edu/~kagan/sjg.pdf.

  • Tiampo, K.F., Rundle, J.B., Klein, W., and Gross, S.J. (1999), Systematic evolution of nonlocal space-time earthquake patterns in Southern California. EOS Trans. AGU 80, 1013.

    Google Scholar 

  • Tiampo, K.F., Rundle, J.B., McGinnis, S., Gross, S.J., and Klein, W., Observation of systematic variations in non-local seismicity patterns from southern California. In Geocomplexity and the Physics of Earthquakes, Geophys. Monogr. Ser. vol. 120 (eds. J.B. Rundle, D.L. Turcotte, and W. Klein), pp. 211–218 (AGU, Washington, D. C. 2000).

    Google Scholar 

  • Tiampo, K.F., Rundle, J.B., McGinnis, S., Gross, S.J., and Klein, W. (2002a), Eigenpatterns in Southern California seismicity. J. Geophys. Res. 107(B12), 2354, doi:10.1029/2001JB000562.

    Article  Google Scholar 

  • Tiampo, K.F., Rundle, J.B., McGinnis, S., Gross, S.J., and Klein, W. (2002b), Mean field threshold systems and earthquakes: An application to earthquake fault systems. Europhys. Lett. 60 (3), 481–487.

    Article  Google Scholar 

  • Tiampo, K.F., Rundle, J.B., McGinnis, S., and Klein, W. (2002c), Pattern dynamics and forecast methods in seismically active regions. Pure Appl. Geophys 159, 2429–2467.

    Article  Google Scholar 

  • Vautard, R. and Ghil, M. (1989), Singular spectrum analysis in nonlinear dynamics, with applications to paleodynamic time series. Physica D 35, 395–424.

    Article  Google Scholar 

  • Walpole, R.E. and Myers, R.H., Probability and Statistics for Engineers and Scientists (Prentice Hall. 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag

About this paper

Cite this paper

Holliday, J., Rundle, J., Tiampo, K., Klein, W., Donnellan, A. (2006). Systematic Procedural and Sensitivity Analysis of the Pattern Informatics Method for Forecasting Large (M > 5) Earthquake Events in Southern California. In: Yin, Xc., Mora, P., Donnellan, A., Matsu’ura, M. (eds) Computational Earthquake Physics: Simulations, Analysis and Infrastructure, Part II. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8131-8_13

Download citation

Publish with us

Policies and ethics